Phase contrast x-ray imaging (PCXI) provides high-contrast images of weakly-attenuating structures like the lungs. PCXI, when paired with 4D X-ray Velocimetry (XV), can measure regional lung function and non-invasively assess the efficacy of emerging therapeutics. Bacteriophage therapy is an emerging antimicrobial treatment option for lung diseases such as cystic fibrosis (CF), particularly with increasing rates of multi-drug-resistant infections.
View Article and Find Full Text PDFHow the heterogeneous distribution of lung volumes changes in response to different mechanical ventilation (MV) strategies is unclear. Using our well-developed four-dimensional computed tomography (4DCT) high-resolution imaging technique, we aimed to assess the effect of different MV strategies on the distribution and heterogeneity of regional lung volumes. Healthy adult female BALB/c mice received either 2 h of "injurious" MV [ = 6, mechanical ventilation at high PIP with zero PEEP (HPZP)] with a peak inspiratory pressure (PIP) of 20 cmHO and zero positive end-expiratory pressure (PEEP), or 2 h of "protective" MV [ = 8, mechanical ventilation at low PIP with PEEP (LPP)] with PIP = 12 cmHO and PEEP = 2 cmHO.
View Article and Find Full Text PDFBackground: Lung inhomogeneity plays a pivotal role in the development of ventilator-induced lung injury (VILI), particularly in the context of pre-existing lung injury. The mechanisms that underlie this interaction are poorly understood. We aimed to elucidate the regional transcriptomic response to mechanical ventilation (MV), with or without pre-existing lung injury, and link this to the regional lung volume response to MV.
View Article and Find Full Text PDFIt is unclear how acid-induced lung injury alters the regional lung volume response to mechanical ventilation (MV) and how this impacts protein expression. Using a mouse model, we investigated the separate and combined effects of acid aspiration and MV on regional lung volumes and how these were associated with the proteome. Adult BALB/c mice were divided into four groups: intratracheal saline, intratracheal acid, saline/MV, or acid/MV.
View Article and Find Full Text PDFTo effectively diagnose, monitor and treat respiratory disease clinicians should be able to accurately assess the spatial distribution of airflow across the fine structure of lung. This capability would enable any decline or improvement in health to be located and measured, allowing improved treatment options to be designed. Current lung function assessment methods have many limitations, including the inability to accurately localise the origin of global changes within the lung.
View Article and Find Full Text PDF