Publications by authors named "S A Cornell-Kennon"

Integrins α4β1/ α9β1 are important in the pathogenesis and progression of inflammatory and autoimmune diseases by their roles in leukocyte activation and trafficking. Natalizumab, a monoclonal antibody selectively targeting α4β1 integrin and blocking leukocyte trafficking to the central nervous system, is an immunotherapy for multiple sclerosis (MS). However, due to its adverse effects associated with chronic treatment, alternative strategies using small peptide mimetic inhibitors are being sought.

View Article and Find Full Text PDF

Polyneuropathy is a disease involving multiple peripheral nerves injuries. Axon regrowth remains the major prerequisite for plasticity, regeneration, circuit formation, and eventually functional recovery and therefore, regulation of neurite outgrowth might be a candidate for treating polyneuropathies. In a recent study, we synthesized and established the methylene-cycloalkylacetate (MCAs) pharmacophore as a lead for the development of a neurotropic drug (inducing neurite/axonal outgrowth) using the PC12 neuronal model.

View Article and Find Full Text PDF

We propose that the time course of an enzyme reaction following the Michaelis-Menten reaction mechanism can be conveniently described by a newly derived algebraic equation, which includes the Lambert Omega function. Following Northrop's ideas [Anal. Biochem.

View Article and Find Full Text PDF

The work in this paper describes the optimization of the 3-(3-phenyl-3H-imidazo[4,5-b]pyridin-2-yl)pyridin-2-amine chemical series as potent, selective allosteric inhibitors of AKT kinases, leading to the discovery of ARQ 092 (21a). The cocrystal structure of compound 21a bound to full-length AKT1 confirmed the allosteric mode of inhibition of this chemical class and the role of the cyclobutylamine moiety. Compound 21a demonstrated high enzymatic potency against AKT1, AKT2, and AKT3, as well as potent cellular inhibition of AKT activation and the phosphorylation of the downstream target PRAS40.

View Article and Find Full Text PDF

This paper describes the implementation of a biochemical and biophysical screening strategy to identify and optimize small molecule Akt1 inhibitors that act through a mechanism distinct from that observed for kinase domain ATP-competitive inhibitors. With the aid of an unphosphorylated Akt1 cocrystal structure of 12j solved at 2.25 Å, it was possible to confirm that as a consequence of binding these novel inhibitors, the ATP binding cleft contained a number of hydrophobic residues that occlude ATP binding as expected.

View Article and Find Full Text PDF