Vaccination can help prevent infection and can also be used to treat cancer, allergy, and potentially even drug overdose. Adjuvants enhance vaccine responses, but currently, the path to their advancement and development is incremental. We used a phenotypic small-molecule screen using THP-1 cells to identify nuclear factor-κB (NF-κB)-activating molecules followed by counterscreening lead target libraries with a quantitative tumor necrosis factor immunoassay using primary human peripheral blood mononuclear cells.
View Article and Find Full Text PDFThe clinical impact of tumor-specific neoantigens as both immunotherapeutic targets and biomarkers has been impeded by the lack of efficient methods for their identification and validation from routine samples. We have developed a platform that combines bioinformatic analysis of tumor exomes and transcriptional data with functional testing of autologous peripheral blood mononuclear cells (PBMCs) to simultaneously identify and validate neoantigens recognized by naturally primed CD4 and CD8 T cell responses across a range of tumor types and mutational burdens. The method features a human leukocyte antigen (HLA)-agnostic bioinformatic algorithm that prioritizes mutations recognized by patient PBMCs at a greater than 40% positive predictive value followed by a short-term in vitro functional assay, which allows interrogation of 50 to 75 expressed mutations from a single 50-ml blood sample.
View Article and Find Full Text PDFTherapeutic benefit to immune checkpoint blockade (ICB) is currently limited to the subset of cancers thought to possess a sufficient tumor mutational burden (TMB) to allow for the spontaneous recognition of neoantigens (NeoAg) by autologous T cells. We explored whether the response to ICB of an aggressive low-TMB squamous cell tumor could be improved through combination immunotherapy using functionally defined NeoAg as targets for endogenous CD4+ and CD8+ T cells. We found that, whereas vaccination with CD4+ or CD8+ NeoAg alone did not offer prophylactic or therapeutic immunity, vaccines containing NeoAg recognized by both subsets overcame ICB resistance and led to the eradication of large established tumors that contained a subset of PD-L1+ tumor-initiating cancer stem cells (tCSC), provided the relevant epitopes were physically linked.
View Article and Find Full Text PDFCD4 T cells play key roles in a range of immune responses, either as direct effectors or through accessory cells, including CD8 T lymphocytes. In cancer, neoantigen (NeoAg)-specific CD8 T cells capable of direct tumor recognition have been extensively studied, whereas the role of NeoAg-specific CD4 T cells is less well understood. We have characterized the murine CD4 T cell response against a validated NeoAg (CLTC) expressed by the MHC-II-deficient squamous cell carcinoma tumor model (SCC VII) at the level of single T cell receptor (TCR) clonotypes and in the setting of adoptive immunotherapy.
View Article and Find Full Text PDF