An eco-friendly approach was used to fabricate zinc oxide nanoparticles (ZnO NPs) using thyme, L., leaf extract. The produced ZnO nanoparticles were characterized by XRD and SEM analysis.
View Article and Find Full Text PDFThe distinct conformational characteristics, functionality, affordability, low toxicity, and usefulness make calixarene-based compounds a promising treatment option for cancer. The aim of the present study is to synthesize a new calixarene-based compound and assess of its anticancer potential on some human cancer cells. The synthesized C-4-Hydroxyphenylcalix[4] resorcinarene (HPCR) was characterized by several spectroscopic techniques such as 1HNMR, 13CNMR, and X-ray crystallographic analysis to confirm its purity and identity.
View Article and Find Full Text PDFIn this study, tin dioxide nanoparticles (SnO NPs) were successfully synthesized through an eco-friendly method using basil leaves extract. The fabricated SnO NPs demonstrated significant adsorption capabilities for phenol (PHE), p-nitrophenol (P-NP), and p-methoxyphenol (P-MP) from water matrices. Optimal conditions for maximum removal efficiency was determined for each phenolic compound, with PHE showing a remarkable 95% removal at a 3 ppm, 0.
View Article and Find Full Text PDFSix novel ciprofloxacin-1,2,3-triazole hybrids (6a-f) were synthesized via click reaction, by reacting of methyl 1-cyclopropyl-6-fluoro-4-oxo-7-(4-(3-oxobutanoyl)piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylate (5) with various aryl azides (9a-f). The new compounds were characterized using High-Resolution Mass Spectrometry (HRMS), 1H NMR, 13C NMR, and elemental analysis. Compounds (6a-f) screened for their in vitro anticancer activity against three cell lines, namely, non-small cell lung cancer (A549), glioblastoma (U-87 MG), and breast cancer (MCF7).
View Article and Find Full Text PDF