Death ligands (DLs), particularly tumor necrosis factor alpha (TNF-α), FAS ligand (FASL), and TNF-related apoptosis-inducing ligand (TRAIL), collectively termed TFT, are pivotal members of the TNF superfamily. While traditionally linked to apoptosis, TFT proteins have emerged as key regulators of various non-apoptotic processes. This review summarizes the non-apoptotic functions of TFT in cancer and explores the intricate crosstalk signaling pathways and their impact on nuclear factor kappa B (NF-κB) signaling, inflammation, and pro-tumorigenic function.
View Article and Find Full Text PDFBackground: The interpretability and explainability of machine learning (ML) and artificial intelligence systems are critical for generating trust in their outcomes in fields such as medicine and healthcare. Errors generated by these systems, such as inaccurate diagnoses or treatments, can have serious and even life-threatening effects on patients. Explainable Artificial Intelligence (XAI) is emerging as an increasingly significant area of research nowadays, focusing on the black-box aspect of sophisticated and difficult-to-interpret ML algorithms.
View Article and Find Full Text PDFPhosphoinositide 3-kinase (PI3K)-AKT and androgen receptor (AR) pathways are commonly activated in prostate cancers. Their reciprocal regulation makes advanced prostate cancers difficult to treat. The current study shows that pleckstrin-2 (PLEK2), a proto-oncoprotein involved in the activation and stabilization of AKT, connects these two pathways.
View Article and Find Full Text PDFTP53 tumor suppressor is frequently altered in lethal, castration-resistant prostate cancer (CRPC). However, to date there are no effective treatments that specifically target TP53 alterations. Using transcriptomic and metabolomic analyses, we have shown here that TP53-altered prostate cancer exhibits an increased dependency on asparagine (Asn) and overexpresses Asn synthetase (ASNS), the enzyme catalyzing the synthesis of Asn.
View Article and Find Full Text PDF