Immune dysregulation in Inborn Errors of Immunity (IEI) shows a broad phenotype, including autoimmune disorders, benign lymphoproliferation, and malignancies, driven by an increasing number of implicated genes. Recent findings suggest that childhood cancer survivors (CCSs) may exhibit immunological abnormalities potentially linked to an underlying IEI, along with a well-known increased risk of subsequent malignancies due to prior cancer treatments. We describe a patient with two composite heterozygous pathogenic variants in the interleukin-2-inducible T-cell kinase () gene and a history of multiple tumors, including recurrent Epstein-Barr virus (EBV)-related nodular sclerosis and Hodgkin's lymphoma (NSHL), associated with unresponsive multiple hand warts, immune thrombocytopenia, and an impaired immunological profile (CD4+ lymphocytopenia, memory B-cell deficiency, reduction in regulatory T-cells, and B-cell- and T-cell-activated profiles).
View Article and Find Full Text PDFThe human gene encodes Phospholipase-A2-Activating-Protein (PLAA) involved in trafficking of membrane proteins. Through its PUL domain (PLAP, Ufd3p, and Lub1p), PLAA interacts with p97/VCP modulating synaptic vesicles recycling. Although few families carrying biallelic variants were reported with progressive neurodegeneration, consequences of monoallelic variants have not been elucidated.
View Article and Find Full Text PDFThe Rab family of guanosine triphosphatases (GTPases) includes key regulators of intracellular transport and membrane trafficking targeting specific steps in exocytic, endocytic, and recycling pathways. DENND5B (Rab6-interacting Protein 1B-like protein, R6IP1B) is the longest isoform of DENND5, an evolutionarily conserved DENN domain-containing guanine nucleotide exchange factor (GEF) that is highly expressed in the brain. Through exome sequencing and international matchmaking platforms, we identified five de novo variants in DENND5B in a cohort of five unrelated individuals with neurodevelopmental phenotypes featuring cognitive impairment, dysmorphism, abnormal behavior, variable epilepsy, white matter abnormalities, and cortical gyration defects.
View Article and Find Full Text PDFZEB2 is a protein-coding gene belonging to a very restricted family of transcription factors. ZEB2 acts mainly as a transcription repressor, is expressed in various tissues and its role is fundamental for the correct development of the nervous system. The best-known clinical picture associated with ZEB2 mutations is Mowat-Wilson syndrome, caused mostly by haploinsufficiency and characterized by possible multi-organ malformations, dysmorphic features, intellectual disability, and epilepsy.
View Article and Find Full Text PDFSotos syndrome (SoS) is a neurodevelopmental disorder that results from NSD1 mutations that cause haploinsufficiency of NSD1. Here, we generated an induced pluripotent stem cell (iPSC) line from fibroblasts of a SoS patient carrying the pathogenic variant (c.1633delA).
View Article and Find Full Text PDFWDR44 prevents ciliogenesis initiation by regulating RAB11-dependent vesicle trafficking. Here, we describe male patients with missense and nonsense variants within the WD40 repeats (WDR) of WDR44, an X-linked gene product, who display ciliopathy-related developmental phenotypes that we can model in zebrafish. The patient phenotypic spectrum includes developmental delay/intellectual disability, hypotonia, distinct craniofacial features and variable presence of brain, renal, cardiac and musculoskeletal abnormalities.
View Article and Find Full Text PDFCystic Fibrosis Transmembrane conductance Regulator (CFTR) is a chloride channel defective in cystic fibrosis (CF). Several CFTR mutations are causative of CF, among which G542X is a nonsense mutation introducing a premature stop codon which prevents CFTR protein synthesis. We generated a new iPSC line from nasal cells carrying G542X homozygous mutation for CFTR: IGGi002A.
View Article and Find Full Text PDFNeurofibromatosis type 1 (NF1) is a neurocutaneous disorder caused by mutations in gene, coding for neurofibromin 1. NF1 can be associated with Moyamoya disease (MMD), and this association, typical of paediatric patients, is referred to as Moyamoya syndrome (MMS). MMD is a cerebral arteriopathy characterized by the occlusion of intracranial arteries and collateral vessel formation, which increase the risk of ischemic and hemorrhagic events.
View Article and Find Full Text PDFSotos syndrome (SoS) is a neurodevelopmental disorder caused by haploinsufficiency of the NSD1 gene located on chromosome 5 region q35.3. In order to understand the pathogenesis of Sotos syndrome and in view of future therapeutic approaches for its efficient treatment, we generated two human induced pluripotent stem cells (iPSCs) lines from one SoS patient carrying a 5q35 microdeletion.
View Article and Find Full Text PDFSegmental overgrowth syndromes include a group of clinical entities, all characterized by the abundant proliferation of tissues or organs in association with vascular abnormalities. These syndromes show a wide spectrum of severity ranging from limited involvement of only small areas of the body to complex cases with impressive distortions of multiple tissues and organs. It is now clear that somatic mutations in genes of the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway (in brief "mTOR pathway") are responsible for such entities.
View Article and Find Full Text PDFHuman-induced pluripotent stem cells (hiPSCs) represent one of the main and powerful tools for the in vitro modeling of neurological diseases. Standard hiPSC-based protocols make use of animal-derived feeder systems to better support the neuronal differentiation process. Despite their efficiency, such protocols may not be appropriate to dissect neuronal specific properties or to avoid interspecies contaminations, hindering their future translation into clinical and drug discovery approaches.
View Article and Find Full Text PDFBackground: Pathogenic variants in PEX-genes can affect peroxisome assembly and function and cause Zellweger spectrum disorders (ZSDs), characterized by variable phenotypes in terms of disease severity, age of onset and clinical presentations. So far, defects in at least 15 PEX-genes have been implicated in Mendelian diseases, but in some of the ultra-rare ZSD subtypes genotype-phenotype correlations and disease mechanisms remain elusive.
Methods: We report five families carrying biallelic variants in PEX13.
Background: Cystic Fibrosis (CF) is a genetic disorder affecting around 1 in every 3000 newborns. In the most common mutation, F508del, the defective anion channel, CFTR, is prevented from reaching the plasma membrane (PM) by the quality check control of the cell. Little is known about how CFTR pharmacological rescue impacts the cell proteome.
View Article and Find Full Text PDFCerebellar hypoplasia and dysplasia encompass a group of clinically and genetically heterogeneous disorders frequently associated with neurodevelopmental impairment. The Neuron Navigator 2 (NAV2) gene (MIM: 607,026) encodes a member of the Neuron Navigator protein family, widely expressed within the central nervous system (CNS), and particularly abundant in the developing cerebellum. Evidence across different species supports a pivotal function of NAV2 in cytoskeletal dynamics and neurite outgrowth.
View Article and Find Full Text PDFWieacker-Wolff syndrome (WWS) is an X-linked Arthrogryposis Multiplex Congenita (AMC) disorder associated with broad neurodevelopmental impairment. The genetic basis of WWS lies in hemizygous pathogenic variants in , encoding a C4H2 type zinc-finger nuclear factor abundantly expressed in the developing human brain. The main clinical features described in WWS families carrying pathogenic variants encompass having a short stature, microcephaly, birth respiratory distress, arthrogryposis, hypotonia, distal muscle weakness, and broad neurodevelopmental delay.
View Article and Find Full Text PDFObjective: To describe the clinical and genetic findings in a cohort of individuals with bathing epilepsy, a rare form of reflex epilepsy.
Methods: We investigated by Sanger and targeted resequencing the gene in 12 individuals from 10 different families presenting with seizures triggered primarily by bathing or showering. An additional 12 individuals with hot-water epilepsy were also screened.
Neurofibromatosis type 1 (NF1) is a proteiform genetic condition caused by pathogenic variants in and characterized by a heterogeneous phenotypic presentation. Relevant genotype-phenotype correlations have recently emerged, but only few pertinent studies are available. We retrospectively reviewed clinical, instrumental, and genetic data from a cohort of 583 individuals meeting at least 1 diagnostic National Institutes of Health (NIH) criterion for NF1.
View Article and Find Full Text PDFNeurodevelopmental disorders (NDDs) are a group of disorders in which the development of the central nervous system (CNS) is disturbed, resulting in different neurological and neuropsychiatric features, such as impaired motor function, learning, language or non-verbal communication. Frequent comorbidities include epilepsy and movement disorders. Advances in DNA sequencing technologies revealed identifiable genetic causes in an increasingly large proportion of NDDs, highlighting the need of experimental approaches to investigate the defective genes and the molecular pathways implicated in abnormal brain development.
View Article and Find Full Text PDFEpisodic ataxia type 2 (EA2) is an autosomal dominant neurological disorder characterized by paroxysmal attacks of ataxia, vertigo, and nausea that usually last hours to days. It is caused by loss-of-function mutations in , the gene encoding the pore-forming α subunit of P/Q-type voltage-gated Ca channels. Although pharmacological treatments, such as acetazolamide and 4-aminopyridine, exist for EA2, they do not reduce or control the symptoms in all patients.
View Article and Find Full Text PDFMutations in the gene cause a broad range of ultra-rare neurodevelopmental and brain degenerative disorders, associated with a high likelihood of premature death in animal models as well as in humans. The encoded Wwox protein is a WW domain-containing oxidoreductase that participates in crucial biological processes including tumor suppression, cell growth/differentiation and regulation of steroid metabolism, while its role in neural development is less understood. We analyzed the exomes of a family affected with multiple pre- and postnatal anomalies, including cerebellar vermis hypoplasia, severe neurodevelopmental impairment and refractory epilepsy, and identified a segregating homozygous mutation leading to a premature stop codon.
View Article and Find Full Text PDFPurpose: Malformations of cortical development (MCD) are a phenotypically and genetically heterogeneous group of disorders, for which the diagnostic rate of genetic testing in a clinical setting remains to be clarified. In this study we aimed to assess the diagnostic rate of germline and pathogenic variants using a custom panel in a heterogeneous group of subjects with MCD and explore genotype-phenotype correlations.
Methods: A total of 84 subjects with different MCD were enrolled.