Publications by authors named "Ryuuichi Takeyama"

Cyclic peptides are attracting attention as therapeutic agents due to their potential for oral absorption and easy access to tough intracellular targets. LUNA18, a clinical KRAS inhibitor, was transformed-without scaffold hopping-from the initial hit by using an mRNA display library that met our criteria for drug-likeness. In drug discovery using mRNA display libraries, hit compounds always possess a site linked to an mRNA tag.

View Article and Find Full Text PDF

Establishing a technological platform for creating clinical compounds inhibiting intracellular protein-protein interactions (PPIs) can open the door to many valuable drugs. Although small molecules and antibodies are mainstream modalities, they are not suitable for a target protein that lacks a deep cavity for a small molecule to bind or a protein found in intracellular space out of an antibody's reach. One possible approach to access these targets is to utilize so-called middle-size cyclic peptides (defined here as those with a molecular weight of 1000-2000 g/mol).

View Article and Find Full Text PDF

Cyclic peptides as a therapeutic modality are attracting a lot of attention due to their potential for oral absorption and accessibility to intracellular tough targets. Here, starting with a drug-like hit discovered using an mRNA display library, we describe a chemical optimization that led to the orally available clinical compound known as LUNA18, an 11-mer cyclic peptide inhibitor for the intracellular tough target RAS. The key findings are as follows: (i) two peptide side chains were identified that each increase RAS affinity over 10-fold; (ii) physico-chemical properties (PCP) including log can be adjusted by side-chain modification to increase membrane permeability; (iii) restriction of cyclic peptide conformation works effectively to adjust PCP and improve bio-activity; (iv) cellular efficacy was observed in peptides with a permeability of around 0.

View Article and Find Full Text PDF

We report a versatile and durable method for synthesizing highly -alkylated drug-like cyclic peptides. This is the first reported method for synthesizing such peptides in parallel with a high success rate and acceptable purity that does not require optimizations for a particular sequence. We set up each reaction condition by overcoming the following issues: (1) diketopiperazine (DKP) formation, (2) insufficient peptide bond formation due to the steric hindrance of the -alkylated amino acid, and (3) instability of highly -alkylated peptides under acidic conditions.

View Article and Find Full Text PDF