Publications by authors named "Ryutaro Utsumi"

Waldiomycin is an inhibitor of histidine kinases (HKs). Although most HK inhibitors target the ATP-binding region, waldiomycin binds to the intracellular dimerization domain (DHp domain) with its naphthoquinone moiety presumed to interact with the conserved H-box region. To further develop inhibitors targeting the H-box, various 2-aminonaphthoquinones with cyclic, aliphatic, or aromatic amino groups and naphtho [2,3-d] isoxazole-4,9-diones were synthesized.

View Article and Find Full Text PDF

Two-component signal transduction systems (TCSs) are widespread types of protein machinery, typically consisting of a histidine kinase membrane sensor and a cytoplasmic transcriptional regulator that can sense and respond to environmental signals. TCSs are responsible for modulating genes involved in a multitude of bacterial functions, including cell division, motility, differentiation, biofilm formation, antibiotic resistance, and virulence. Pathogenic bacteria exploit the capabilities of TCSs to reprogram gene expression according to the different niches they encounter during host infection.

View Article and Find Full Text PDF

Bacterial pathogens are able to survive within diverse habitats. The dynamic adaptation to the surroundings depends on their ability to sense environmental variations and to respond in an appropriate manner. This involves, among others, the activation of various cell-to-cell communication strategies.

View Article and Find Full Text PDF

The EvgS/EvgA two-component signal transduction system in is activated under mildly acidic pH conditions. Upon activation, this system induces the expression of a number of genes that confer acid resistance. The EvgS histidine kinase sensor has a large periplasmic domain that is required for perceiving acidic signals.

View Article and Find Full Text PDF

Two-component signal transduction systems (TCSs), consisting of a histidine kinase (HK) and its cognate response regulator, are ubiquitous among bacteria and are associated with the virulence of pathogens. TCSs are potential targets for alternative antibiotics and antivirulence agents. It is, thus, very important to determine HK activity in bacterial TCSs.

View Article and Find Full Text PDF

In the bacterial signaling mechanisms known as two-component systems (TCSs), signals are generally conveyed by means of a His-Asp phosphorelay. Each system consists of a histidine kinase (HK) and its cognate response regulator. Because of the labile nature of phosphorylated His and Asp residues, few approaches are available that permit a quantitative analysis of their phosphorylation status.

View Article and Find Full Text PDF

The PhoQ/PhoP two-component signal transduction system is conserved in various Gram-negative bacteria and is often involved in the expression of virulence in pathogens. The small inner membrane protein SafA activates PhoQ in Escherichia coli independently from other known signals that control PhoQ activity. We have previously shown that SafA directly interacts with the sensor domain of the periplasmic region of PhoQ (PhoQ-SD) for activation, and that a D179R mutation in PhoQ-SD attenuates PhoQ activation by SafA.

View Article and Find Full Text PDF

WalRK is an essential two-component signal transduction system that plays a central role in coordinating cell wall synthesis and cell growth in Bacillus subtilis. However, the physiological role of WalRK and its essentiality for growth have not been elucidated. We investigated the behaviour of WalRK during heat stress and its essentiality for cell proliferation.

View Article and Find Full Text PDF

Bacterial cells possess a signal transduction system that differs from those described in higher organisms, including human cells. These so-called two-component signal transduction systems (TCSs) consist of a sensor (histidine kinase, HK) and a response regulator, and are involved in cellular functions, such as virulence, drug resistance, biofilm formation, cell wall synthesis, cell division. They are conserved in bacteria across all species.

View Article and Find Full Text PDF

The WalK/WalR two-component system is essential for cell wall metabolism and thus for cell growth in Bacillus subtilis. Waldiomycin was previously isolated as an antibiotic that targeted WalK, the cognate histidine kinase (HK) of the response regulator, WalR, in B. subtilis.

View Article and Find Full Text PDF

Two-component signal transduction systems (TCSs), composed of a histidine kinase sensor (HK) and its cognate response regulator, sense and respond to environmental changes and are related to the virulence of pathogens. TCSs are potential targets for alternative antibiotics and anti-virulence agents. Here we found that waldiomycin, an angucycline antibiotic that inhibits a growth essential HK, WalK, in Gram-positive bacteria, also inhibits several class I HKs from the Gram-negative Escherichia coli.

View Article and Find Full Text PDF

Bacteria utilize varying combinations of two-component regulatory systems, many of which respond and adapt closely to stress conditions, thus expanding their niche steadily. While mechanisms of recognition and avoidance of the specific Fe signal by the PmrA/PmrB system is well understood, those of the CpxR/CpxA system are more complex because they can be induced by various stress conditions, which, in turn, expresses a variety of phenotypes. Here, we highlight another aspect of the CpxR/CpxA system; mutations in degP and yqjA genes, which are under the control of the system, exhibit an iron sensitive phenotype in the mutant background defective in the PmrA-dependent gene products that alter the pyrophosphate status of the lipid A moiety of lipopolysaccharide in Salmonella enterica.

View Article and Find Full Text PDF

Unlabelled: Tropolone, a phytotoxin produced by Burkholderia plantarii, causes rice seedling blight. To identify genes involved in tropolone synthesis, we systematically constructed mutations in the genes encoding 55 histidine kinases and 72 response regulators. From the resulting defective strains, we isolated three mutants, KE1, KE2, and KE3, in which tropolone production was repressed.

View Article and Find Full Text PDF

Two-component signal transduction systems (TCSs) represent one of the primary means by which bacteria sense and respond to changes in their environment, both intra- and extracellular. The highly conserved WalK (histidine kinase)/WalR (response regulator) TCS is essential for cell wall metabolism of low G+C Gram-positive bacteria and acts as a master regulatory system in controlling and coordinating cell wall metabolism with cell division. Waldiomycin, a WalK inhibitor, has been discovered by screening metabolites from actinomycetes and belongs to the family of angucycline antibiotics.

View Article and Find Full Text PDF

Hybrid sensor kinase, which contains a histidine kinase (HK) domain, a receiver domain, and a histidine-containing phosphotransmitter (HPt) domain, conveys signals to its cognate response regulator by means of a His-Asp-His-Asp phosphorelay. We examined the multistep phosphorelay of a recombinant EvgAS system in Escherichia coli and performed in vitro quantitative analyses of phosphorylation by using Phos-tag SDS-PAGE. Replacement of Asp in the receiver domain of EvgS by Ala markedly promoted phosphorylation at His in the HK domain compared with that in wild-type EvgS.

View Article and Find Full Text PDF

Two-component signal transduction systems (TCSs) in bacteria perceive environmental stress and transmit the information via phosphorelay to adjust multiple cellular functions for adaptation. The EvgS/EvgA system is a TCS that confers acid resistance to Escherichia coli cells. Activation of the EvgS sensor initiates a cascade of transcription factors, EvgA, YdeO, and GadE, which induce the expression of a large group of acid resistance genes.

View Article and Find Full Text PDF

WalK, a histidine kinase, and WalR, a response regulator, make up a two-component signal transduction system that is indispensable for the cell-wall metabolism of low GC Gram-positive bacteria. WalK inhibitors are likely to show bactericidal effects against methicillin-resistant Staphylococcus aureus . We discovered a new WalK inhibitor, designated waldiomycin, by screening metabolites from actinomycetes.

View Article and Find Full Text PDF

The PhoQ/PhoP two-component signal transduction system in Escherichia coli is activated by SafA, a small membrane protein that modifies the PhoQ histidine kinase. The SafA C-terminal domain (41-65 aa) interacts directly with the sensory domain of PhoQ at the periplasm. We used in vitro and in vivo strategies to elucidate the way SafA modifies the PhoQ/PhoP phosphorelay system.

View Article and Find Full Text PDF

Background: Bacteria integrate numerous environmental stimuli when generating cellular responses. Increasing numbers of examples describe how one two-component system (TCS) responds to signals detected by the sensor of another TCS. However, the molecular mechanisms underlying this phenomenon remain poorly defined.

View Article and Find Full Text PDF

Sensor histidine kinases of two-component signal transduction systems (TCSs) respond to various environmental signals and transduce the external stimuli across the cell membrane to their cognate response regulators. Recently, membrane proteins that modulate sensory systems have been discovered. Among such proteins is SafA, which activates the PhoQ/PhoP TCS by direct interaction with the sensor PhoQ.

View Article and Find Full Text PDF

The WalK (histidine kinase)/WalR (response regulator) two-component signal transduction system is a master regulatory system for cell wall metabolism and growth. This system is conserved in low G+C Gram-positive bacteria, including Bacillus subtilis, Staphylococcus aureus, Enterococcus faecalis, and Streptococcus mutans. In this study, we found the first antibiotic that functions as a WalK inhibitor (signermycin B) by screening 10,000 Streptomyces extracts.

View Article and Find Full Text PDF

Gene clusters contributing to processes such as cell growth and pathogenicity are often controlled by two-component signal transduction systems (TCSs). TCS consists of a histidine kinase (HK) and a response regulator (RR). TCSs are attractive as drug targets for antimicrobials because many HK and RR genes are coded on the bacterial genome though few are found in lower eukaryotes.

View Article and Find Full Text PDF

The rhizome oil of Zingiber zerumbet Smith contains an exceptionally high content of sesquiterpenoids with zerumbone, a predominating potential multi-anticancer agent. Biosynthetic pathways of zerumbone have been proposed, and two genes ZSS1 and CYP71BA1 that encode the enzymes catalyzing the first two steps have been cloned. In this paper, we isolated a cDNA clone (ZSD1) that encodes an alcohol dehydrogenase capable of catalyzing the final step of zerumbone biosynthesis.

View Article and Find Full Text PDF

Two-component signal transduction systems (TCSs) in prokaryotes often regulate gene clusters that induce pathogenicity, and thus they have frequently been proposed as potential drug targets for attenuating the virulence of pathogens. The pathogenic potential of Streptococcus mutans, the major etiological pathogen of dental caries, is also regulated by its TCSs. The object of this study was to evaluate the effect of a histidine kinase (HK) inhibitor against two major virulence factors of S.

View Article and Find Full Text PDF

Tractable plasmids (pAC-Mv-based plasmids) for Escherichia coli were constructed, which carried a mevalonate-utilizing gene cluster, towards an efficient functional analysis of cytochromes P450 involved in sesquiterpene biosynthesis. They included genes coding for a series of redox partners that transfer the electrons from NAD(P)H to a P450 protein. The redox partners used were ferredoxin reductases (CamA and NsRED) and ferredoxins (CamB and NsFER), which are derived from Pseudomonas putida and cyanobacterium Nostoc sp.

View Article and Find Full Text PDF