Manufacturing semiconductor devices requires advanced patterning technologies, including reactive ion etching (RIE) based on the synergistic interactions between ions and etch gas. However, these interactions weaken as devices continuously scale down to sub-nanoscale, primarily attributed to the diminished transport of radicals and ions into the small features. This leads to a significant decrease in etch rate (ER).
View Article and Find Full Text PDFWe present a method for computer-generated holography (CGH) in which different images are reproduced on both sides of a hologram with a single illumination source. In the proposed method, we use a transmissive spatial light modulator (SLM) and a half mirror (HM) located downstream of the SLM. The light modulated by the SLM is partially reflected by the HM, and the reflected light is modulated again by the SLM for the double-sided image reproduction.
View Article and Find Full Text PDFThis publisher's note contains a correction to Opt. Lett.47, 3844 (2022)10.
View Article and Find Full Text PDFWe present a method for computer-generated holography (CGH) using spatially and temporally incoherent light. The proposed method synthesizes a hologram cascade by solving an inverse problem for the propagation of incoherent light. The spatial incoherence removes speckle noise in CGH, and the temporal incoherence simplifies the optical setup, including the light source.
View Article and Find Full Text PDFWe propose a new fabrication scheme of quantum point contacts (QPCs) composed of nanogaps at room temperature. This scheme is based on electromigration induced by a field emission current, which is so-called "activation." By applying the activation to ferromagnetic Ni nanogaps with sub-10 nm separation, QPCs can be easily obtained at room temperature.
View Article and Find Full Text PDF