Multi-MeV high-purity proton acceleration by using a hydrogen cluster target irradiated with repetitive, relativistic intensity laser pulses has been demonstrated. Statistical analysis of hundreds of data sets highlights the existence of markedly high energy protons produced from the laser-irradiated clusters with micron-scale diameters. The spatial distribution of the accelerated protons is found to be anisotropic, where the higher energy protons are preferentially accelerated along the laser propagation direction due to the relativistic effect.
View Article and Find Full Text PDFThe dynamics of the boundary layer in between two distinct collisionless plasmas created by the interaction between a dense object modeling a cluster and a short laser pulse in the presence of an ambient gas is studied with two dimensional relativistic particle-in-cell simulations, which are found to be described by three successive processes. In the first phase, a collisionless electrostatic shock wave, launched near the cluster expansion front, reflects the ambient gas ions at a contact surface as a moving wall, which allows a particle acceleration with a narrower energy spread. In the second phase, the contact surface disappears and the compressed surface of the ambient gas ions passes over the shock potential, forming an overlapping region between the cluster expansion front and the compressed surface of the ambient gas.
View Article and Find Full Text PDFAn approach for accelerating a quasimonoenergetic proton bunch via a hemispherically converging collisionless shock created in laser-cluster interactions at the relativistically induced transparency (RIT) regime is studied using three-dimensional particle-in-cell simulations. By the action of focusing a petawatt class laser pulse onto a micron-size spherical hydrogen cluster, a crescent-shaped collisionless shock is launched at the laser-irradiated hemisphere and propagates inward. The shock converges at the sphere center in concurrence with the onset of the RIT, thereby allowing the proton bunch to be pushed out from the shock surface in the laser propagation direction.
View Article and Find Full Text PDFWe have recently found an H/quinidine (a lipophilic cation, QND) antiport system in Madin-Darby canine kidney (MDCK) cells. The primary aim of the present study was to evaluate whether the H/lipophilic cation antiport system is expressed in porcine LLC-PK cells. That is, we investigated uptake and/or efflux of QND and another cation, bisoprolol, in LLC-PK cells.
View Article and Find Full Text PDF