Publications by authors named "Ryutaro Kajihara"

Both the brain-derived neurotrophic factor (BDNF) and glucocorticoids (GCs) play multiple roles in various aspects of neurons, including cell survival and synaptic function. BDNF and its receptor TrkB are extensively expressed in neurons of the central nervous system (CNS), and the contribution of the BDNF/TrkB system to neuronal function is evident; thus, its downregulation has been considered to be involved in the pathogenesis of Alzheimer's disease (AD). GCs, stress-related molecules, and glucocorticoid receptors (GRs) are also considered to be associated with AD in addition to mental disorders such as depression.

View Article and Find Full Text PDF

Neurotrophins including brain-derived neurotrophic factor, BDNF, have critical roles in neuronal differentiation, cell survival, and synaptic function in the peripheral and central nervous system. It is well known that a variety of intracellular signaling stimulated by TrkB, a high-affinity receptor for BDNF, is involved in the physiological and pathological neuronal aspects via affecting cell viability, synaptic function, neurogenesis, and cognitive function. As expected, an alteration of the BDNF/TrkB system is suspected to be one of the molecular mechanisms underlying cognitive decline in cognitive diseases and mental disorders.

View Article and Find Full Text PDF

Unlabelled: Lack of reliable predictive biomarkers is a major limitation of combination therapy with chemotherapy and anti-programmed cell death protein 1/programmed death-ligand 1 (anti-PD-1/PD-L1) therapy (chemo-immunotherapy). We previously observed that the increase of peripheral blood CD8 T cells expressing CX3CR1, a marker of differentiation, correlates with response to anti-PD-1 therapy; however, the predictive and prognostic value of T-cell CX3CR1 expression during chemo-immunotherapy is unknown. Here, we evaluated the utility of circulating CX3CR1CD8 T cells as a predictive correlate of response to chemo-immunotherapy in patients with non-small cell lung cancer (NSCLC).

View Article and Find Full Text PDF

The involvement of the changed expression/function of neurotrophic factors in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease (AD), has been suggested. AD is one of the age-related dementias, and is characterized by cognitive impairment with decreased memory function. Developing evidence demonstrates that decreased cell survival, synaptic dysfunction, and reduced neurogenesis are involved in the pathogenesis of AD.

View Article and Find Full Text PDF

Background: Dendritic cells (DCs) play critical roles in regulating the innate and adaptive immune responses, and have long been a major focus of cancer immunotherapy. Accumulating evidence suggests that conventional type 1 DCs (cDC1s) excel in cross-presentation of exogenous antigens on MHC-I molecules and induction of antitumor CD8 T cell immunity; however, obtaining large numbers of cDC1s is difficult. The use of reprogramming and differentiation technology is advantageous for obtaining unlimited numbers of autologous cDC1s especially for therapeutic interventions where repeated vaccinations are required.

View Article and Find Full Text PDF

Despite recent progress in therapeutic strategies, prognosis of metastatic triple-negative breast cancer (TNBC) remains dismal. Evidence suggests that the induction and activation of tumor-residing conventional type-1 dendritic cells (cDC1s) is critical for the generation of CD8 T cells that mediate the regression of mammary tumors and potentiate anti-PD-1/PD-L1 therapeutic efficacy. However, it remains unknown whether this strategy is effective against metastatic TNBC, which is poorly responsive to immunotherapy.

View Article and Find Full Text PDF

Neoadjuvant immunotherapy, given before surgical resection, is a promising approach to develop systemic antitumor immunity for the treatment of high-risk resectable disease. Here, using syngeneic and orthotopic mouse models of triple-negative breast cancer, we have tested the hypothesis that generation of tumor-specific T-cell responses by induction and activation of tumor-residing Batf3-dependent conventional type 1 dendritic cells (cDC1) before resection improves control of distant metastatic disease and survival. Mice bearing highly metastatic orthotopic tumors were treated with a combinatorial immunomodulation (ISIM) regimen comprised of intratumoral administration of Flt3L, local radiotherapy, and TLR3/CD40 stimulations, followed by surgical resection.

View Article and Find Full Text PDF

Intralesional therapy is a promising approach for remodeling the immunosuppressive tumor microenvironment while minimizing systemic toxicities. A combinatorial in situ immunomodulation (ISIM) regimen with intratumoral administration of Fms-like tyrosine kinase 3 ligand (Flt3L), local irradiation, and TLR3/CD40 stimulation induces and activates conventional type 1 dendritic cells in the tumor microenvironment and elicits de novo adaptive T cell immunity in poorly T cell-inflamed tumors. However, the impact of ISIM on myeloid-derived suppressor cells (MDSCs), which may promote treatment resistance, remains unknown.

View Article and Find Full Text PDF

Background: Dendritic cells (DCs) are a promising therapeutic target in cancer immunotherapy given their ability to prime antigen-specific T cells, and initiate antitumor immune response. A major obstacle for DC-based immunotherapy is the difficulty to obtain a sufficient number of functional DCs. Theoretically, this limitation can be overcome by using induced pluripotent stem cells (iPSCs); however, therapeutic strategies to engage iPSC-derived DCs (iPSC-DCs) into cancer immunotherapy remain to be elucidated.

View Article and Find Full Text PDF

The use of tumor mutation-derived neoantigen represents a promising approach for cancer vaccines. Preclinical and early phase human clinical studies have shown the successful induction of tumor neoepitope-directed responses; however, overall clinical efficacy of neoantigen vaccines has been limited. One major obstacle of this strategy is the prevailing lack of sufficient understanding of the mechanism underlying the generation of neoantigen-specific CD8 T cells.

View Article and Find Full Text PDF

Human induced pluripotent stem cells (iPSCs) and their progeny displaying tissue-specific characteristics have paved the way for regenerative medicine and research in various fields such as the elucidation of the pathological mechanism of diseases and the discovery of drug candidates. iPSC-derived neurons are particularly valuable as it is difficult to analyze neural cells obtained from the central nervous system in humans. For neuronal induction with iPSCs, one of the commonly used approaches is the isolation and expansion of neural rosettes, following the formation of embryonic bodies (EBs).

View Article and Find Full Text PDF

Sialidosis is a neuropathic lysosomal storage disease caused by a deficiency in the NEU1 gene-encoding lysosomal neuraminidase and characterized by abnormal accumulation of undigested sialyl-oligoconjugates in systemic organs including brain. Although patients exhibit neurological symptoms, the underlying neuropathological mechanism remains unclear. Here, we generated induced pluripotent stem cells (iPSCs) from skin fibroblasts with sialidosis and induced the differentiation into neural progenitor cells (NPCs) and neurons.

View Article and Find Full Text PDF

GM1 gangliosidosis is a lysosomal storage disease caused by loss of lysosomal β-galactosidase activity and characterized by progressive neurodegeneration due to massive accumulation of GM1 ganglioside in the brain. Here, we generated induced pluripotent stem cells (iPSCs) derived from patients with GM1 gangliosidosis, and the resultant neurons showed impaired neurotransmitter release as a presynaptic function and accumulation of GM1 ganglioside. Treatment of normal neurons with GM1 ganglioside also disturbed presynaptic function.

View Article and Find Full Text PDF

Tay-Sachs disease (TSD) is a GM2 gangliosidosis lysosomal storage disease caused by a loss of lysosomal hexosaminidase-A (HEXA) activity and characterized by progressive neurodegeneration due to the massive accumulation of GM2 ganglioside in the brain. Here, we generated iPSCs derived from patients with TSD, and found similar potential for neural differentiation between TSD-iPSCs and normal iPSCs, although neural progenitor cells (NPCs) derived from the TSD-iPSCs exhibited enlarged lysosomes and upregulation of the lysosomal marker, LAMP1, caused by the accumulation of GM2 ganglioside. The NPCs derived from TSD-iPSCs also had an increased incidence of oxidative stress-induced cell death.

View Article and Find Full Text PDF

In order to investigate genetic impact of a large amount of radionuclides released by the Fukushima Dai-ichi Nuclear Power Plant accident in 2011, we surveyed 2,304 haploid genomes of Drosophila melanogaster collected in three localities in Fukushima in 2012 and 2013 for chromosomal inversions. No unique inversion was found in 298 genomes in 2012 and only two in 2,006 genomes in 2013. The observed frequencies were even lower than the long-term average frequency of unique inversions in Japan.

View Article and Find Full Text PDF

Crosslinking BCR in the immature B cell line WEHI-231 causes apoptosis. We found that Bcl-xL was degraded by polyubiquitination upon BCR crosslinking and in this study explored the mechanism that controls the degradation of Bcl-xL. Ser(62) of Bcl-xL was phosphorylated by JNK to trigger polyubiquitination, and this was opposed by serine/threonine protein phosphatase 6 (PP6) that physically associated with Bcl-xL.

View Article and Find Full Text PDF

Protein phosphatase (PP) 6 is a serine threonine phosphatase which belongs to the PP2A subfamily of protein phosphatases. PP6 has been implicated in the control of apoptosis. A dominant negative form PP6 (DN-PP6) mutant cDNA was prepared and transfected into HeLa cells to investigate the regulation of apoptosis.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session0btcpepb5vnh0pr2v15leck4c32pnfev): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once