Publications by authors named "Ryusuke Yamashita"

Rituximab is reported to inhibit the proliferation of lymphoma cells through an unknown CD20-mediated signal transduction pathway. Herein, we investigated cell surface molecules involved in the CD20-mediated signal transduction pathway by using a recently developed technique named enzyme-mediated activation of radical sources. Using this method, we found that under stimulation with rituximab and another anti-CD20 antibody B-Ly1, CD20 was physically associated with fibroblast growth factor receptor 3 (FGFR3) as well as some other receptor tyrosine kinases in Raji cells.

View Article and Find Full Text PDF

We previously reported a simple method to analyze the interaction of cell-surface molecules in living cells. This method termed enzyme-mediated activation of radical sources (EMARS) is featured by radical formation of the labeling reagent by horseradish peroxidase (HRP). Herein, we propose an approach to the cell-surface molecular interactome by using combination of this EMARS reaction and MS-based proteomics techniques.

View Article and Find Full Text PDF

Integrins are widely expressed cell surface molecules that mediate cell attachment to extracellular matrix (ECM) proteins. They also interact with molecules on their own membranes, and these cis-interactions play a crucial role in integrin-dependent cellular responses. We herein analysed what molecules interact with β1 integrin during biological events induced by cell attachment to different ECM proteins, using a recently established reaction, the enzyme-mediated activation of radical sources (EMARS).

View Article and Find Full Text PDF

The anti-CD20 monoclonal antibody (Ab) rituximab is accepted to be an effective therapeutic Ab for malignant B-cell lymphoma; however, discovery of other cell surface antigens is required for the option of antibody medicine. Considering that many tumor-associated antigens are glycans, we have searched glycoconjugates for the candidate antigens that therapeutic Abs target. To this end, we first focused on the difference in the glycogenes expression in terms of Epstein-Barr virus (EBV) infection of a Burkitt's lymphoma cell line, Akata.

View Article and Find Full Text PDF

Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA1), a latent viral protein consistently expressed in infected proliferating cells, is essentially required in trans to maintain EBV episomes in cells. Thus EBNA1 will be an appropriate target for specific molecular therapy against EBV-associated cancers. We constructed a mutant (mt) EBNA1 lacking the N-terminal-half, relative to wild-type (wt) EBNA1, and demonstrated that it exerted dominant-negative effects on maintenance of the viral episome from cells regardless of viral latency or tissue origin thereby leading to significant suppression of naturally EBV-harboring Burkitt's lymphoma cell growth in vitro and in vivo.

View Article and Find Full Text PDF