Publications by authors named "Ryushiro D Kasahara"

Most of the studied MADS box members are linked to flowering and fruit traits. However, higher volumes of studies on type II of the two types so far suggest that the florigenic effect of the gene members could just be the tip of the iceberg. In the current study, we used a systematic approach to obtain a general overview of the MADS box members' cross-trait and multifactor associations, and their pleiotropic potentials, based on a manually curated local reference database.

View Article and Find Full Text PDF

is master regulator of the molecular network involved in pollen tube attraction. Until recently, it was unclear how this gene exhibits exclusively synergid cell-specific expression in ovule. Our recent study has established that a 16-bp-long element is crucial for its synergid cell-specific expression in ovule, and an 84-bp-long fragment harboring is sufficient to drive the process.

View Article and Find Full Text PDF

is a key regulator of the genetic network behind pollen tube attraction toward the female gametophyte. is specifically expressed in the synergid cells (SCs), a female gametophyte component cells specialized for pollen tube attraction. However, it had not been clear how exactly achieves this specific expression pattern.

View Article and Find Full Text PDF

Pollen tube (PT) serves as a vehicle that delivers male gametes (sperm cells) to a female gametophyte during double fertilization, which eventually leads to the seed formation. It is one of the fastest elongating structures in plants. Normally, PTs traverse through the extracellular matrix at the transmitting tract after penetrating the stigma.

View Article and Find Full Text PDF

Carbohydrates (sugars) are an essential energy-source for all life forms. They take a significant share of our daily consumption and are used for biofuel production as well. However, sugarcane and sugar beet are the only two crop plants which are used to produce sugar in significant amounts.

View Article and Find Full Text PDF

Gametophytic mutants share very small proportion of the total mutants generated by any mutagenic approach; even rarer are the fertilization-defective gametophytic mutants. They require an efficient and targeted strategy instead of 'brute force' screening approach. The classical gametophyte mutant screening method, mainly based on the segregation distortion, can distinguish gametophytic mutants from the others.

View Article and Find Full Text PDF

In light of the available discoveries in the field, this review manuscript discusses on plant reproduction mechanism and molecular players involved in the process. Sperm cells in angiosperms are immotile and are physically distant to the female gametophytes (FG). To secure the production of the next generation, plants have devised a clever approach by which the two sperm cells in each pollen are safely delivered to the female gametophyte where two fertilization events occur (by each sperm cell fertilizing an egg cell and central cell) to give rise to embryo and endosperm.

View Article and Find Full Text PDF

Plant reproduction is an extremely important phenomenon, as it is strongly associated with plant genetics and early development. Additionally, foundations of the reproductive system have direct implications on plant breeding and agriculture. Investigation of the functions of male and female gametophytes is critical since their fusion is required for seed formation.

View Article and Find Full Text PDF

Plant seeds are essential for human beings, constituting 70% of carbohydrate resources worldwide; examples include rice, wheat, and corn. In angiosperms, fertilization of the egg by a sperm cell is required for seed formation; therefore, fertilization failure results in no seed formation, except in the special case of apomixis. Initially, plants produce many pollen grains inside the anthers; once the pollen grain is deposited onto the top of the pistil, the pollen tube elongates until it reaches the ovule.

View Article and Find Full Text PDF

In angiosperms, pollen tubes carry two sperm cells toward the egg and central cells to complete double fertilization. In animals, not only sperm but also seminal plasma is required for proper fertilization. However, little is known regarding the function of pollen tube content (PTC), which is analogous to seminal plasma.

View Article and Find Full Text PDF

In flowering plants, double fertilization is normally accomplished by the first pollen tube, with the fertilized ovule subsequently inhibiting the attraction of a second pollen tube. However, the mechanism of second-pollen-tube avoidance remains unknown. We discovered that failure to fertilize either the egg cell or the central cell compromised second-pollen-tube avoidance in Arabidopsis thaliana.

View Article and Find Full Text PDF

For over a century, plant fertilization has been thought to depend on the fertility of a single pollen tube. However, we reported recently a "fertilization recovery system" in flowering plants that actively rescues failed fertilization of a defective mutant pollen tube by attracting a second, functional pollen tube. In typical flowering plants, two synergid cells beside the egg cell attract pollen tubes, one of which degenerates upon pollen tube discharge.

View Article and Find Full Text PDF

In animal fertilization, multiple sperms typically arrive at an egg cell to "win the race" for fertilization. However, in flowering plants, only one of many pollen tubes, conveying plant sperm cells, usually arrives at each ovule that harbors an egg cell. Plant fertilization has thus been thought to depend on the fertility of a single pollen tube.

View Article and Find Full Text PDF
Article Synopsis
  • For over 140 years, scientists believed that pollen tubes in flowering plants were guided by attractants from ovules, but concrete evidence for a specific molecule was lacking.
  • Recent research has identified secreted cysteine-rich polypeptides (CRPs) from synergid cells as key attractants in the final stage of pollen tube guidance.
  • In experiments with the plant Torenia fournieri, two specific CRPs, named LUREs, were shown to effectively attract pollen tubes, and blocking these molecules reduced attraction, confirming their role as the signaling attractants.
View Article and Find Full Text PDF

The synergid cells of the female gametophyte play a role in many steps of the angiosperm fertilization process, including guidance of pollen tube growth to the female gametophyte. However, the mechanisms by which the synergid cells become specified and develop their unique features during female gametophyte development are not understood. We identified MYB98 in a screen for Arabidopsis thaliana genes expressed in the female gametophyte.

View Article and Find Full Text PDF