Publications by authors named "Ryuji Tsugeki"

Our current understanding of vein development in leaves is based on canalization of the plant hormone auxin into self-reinforcing streams which determine the sites of vascular cell differentiation. By comparison, how auxin biosynthesis affects leaf vein patterning is less well understood. Here, after observing that inhibiting polar auxin transport rescues the sparse leaf vein phenotype in auxin biosynthesis mutants, we propose that the processes of auxin biosynthesis and cellular auxin efflux work in concert during vein development.

View Article and Find Full Text PDF

In animals and yeasts, the DEAH-box RNA-dependent ATPase Prp16 facilitates pre-mRNA splicing. However, in Chlamydomonas reinhardtii and Caenorhabditis elegans, Prp16 orthologs are not important for general pre-mRNA splicing, but are required for gene silencing and sex determination, respectively. The CLUMSY VEIN (CUV) gene, which encodes a unique Prp16 ortholog in Arabidopsis thaliana, influences auxin-mediated development.

View Article and Find Full Text PDF

Pre-messenger RNA (pre-mRNA) splicing is essential in eukaryotic cells. In animals and yeasts, the DEAH-box RNA-dependent ATPase Prp16 mediates conformational change of the spliceosome, thereby facilitating pre-mRNA splicing. In yeasts, Prp16 also plays an important role in splicing fidelity.

View Article and Find Full Text PDF

The maintenance and reformation of gene expression domains are the basis for the morphogenic processes of multicellular systems. In a leaf primordium of Arabidopsis thaliana, the expression of FILAMENTOUS FLOWER (FIL) and the activity of the microRNA miR165/166 are specific to the abaxial side. This miR165/166 activity restricts the target gene expression to the adaxial side.

View Article and Find Full Text PDF

During leaf development in flowering plants, adaxial (upper) and abaxial (lower) side-specific genes are responsible for blade outgrowth, which takes places predominantly in the lateral direction, and for margin development as well as differentiation of adaxial and abaxial tissues. However, the underlying mechanisms are poorly understood. Here, we show that two WUSCHEL-RELATED HOMEOBOX (WOX) genes, PRESSED FLOWER (PRS)/WOX3 and WOX1, encoding homeobox transcription factors, act in blade outgrowth and margin development downstream of adaxial/abaxial polarity establishment.

View Article and Find Full Text PDF

Polarity along the adaxial-abaxial axis of the leaf is essential for leaf development and morphogenesis. One of the genes that encodes a putative transcription factor regulating adaxial-abaxial polarity, FILAMENTOUS FLOWER (FIL), is expressed in the abaxial region of the leaf primordia. However, the molecular mechanisms controlling the polarized expression of FIL remain unclear.

View Article and Find Full Text PDF

Local, efflux-dependent auxin gradients and maxima mediate organ and tissue development in plants. The auxin-efflux pattern is regulated by dynamic expression and asymmetric subcellular localization of PIN auxin-efflux proteins during plant organogenesis. Thus, the question of how the expression and subcellular localization of PIN proteins are controlled goes to the heart of plant development.

View Article and Find Full Text PDF

Local efflux-dependent auxin gradients and maxima mediate organ and tissue development in plants. Auxin efflux is regulated by dynamic expression and subcellular localization of the PIN auxin-efflux proteins, which appears to be established not only through a self-organizing auxin-mediated polarization mechanism, but also through other means, such as cell fate determination and auxin-independent mechanisms. Here, we show that the Arabidopsis thaliana NO VEIN (NOV) gene, encoding a novel, plant-specific nuclear factor, is required for leaf vascular development, cellular patterning and stem cell maintenance in the root meristem, as well as for cotyledon outgrowth and separation.

View Article and Find Full Text PDF

Epidermal cell differentiation in Arabidopsis root is studied as a model system for understanding cell fate specification. Two types of MYB-related transcription factors are involved in this cell differentiation. One of these, CAPRICE (CPC), encoding an R3-type MYB protein, is a positive regulator of hair cell differentiation and is preferentially transcribed in hairless cells.

View Article and Find Full Text PDF