(1) Background: Our previous studies revealed that orexin-A, an appetite-increasing peptide, suppressed reflex swallowing via the commissural part of the nucleus tractus solitarius (cNTS), and that glucagon-like peptide-1 (GLP-1), an appetite-reducing peptide, also suppressed reflex swallowing via the medial nucleus of the NTS (mNTS). In this study, we examined the mutual interaction between orexin-A and GLP-1 in reflex swallowing. (2) Methods: Sprague-Dawley rats under urethane-chloralose anesthesia were used.
View Article and Find Full Text PDFTo evaluate the role of afferent information from the salivary gland, we analyzed the neural activity of the sensory nerve innervating the submandibular gland in anesthetized rats. The sensory nerves running through the parasympathetic nerve supply responded to mechanical pressure applied to the surface of the main duct and the body of the gland, whilst those in the sympathetic nerve supply responded only to the body of the gland. The sensory nerves in the sympathetic and parasympathetic nerve routes responded to pressure in the duct system produced by a retrograde injection of saline into the main duct.
View Article and Find Full Text PDFThe effects of glucagon like peptide-1 (GLP-1) on reflex swallowing were examined using anaesthetized rats. GLP-1 was injected into the dorsal vagal complex (DVC) using glass micropipettes. Swallowing was induced by repeated electrical stimulation of the central cut end of the superior laryngeal nerve (SLN) and was identified by the electromyogram lead penetrated in the mylohyoide muscle through bipolar electrodes.
View Article and Find Full Text PDFThe superior salivatory nucleus (SSN) contains parasympathetic preganglionic neurons innervating the submandibular and sublingual salivary glands. Cevimeline, a muscarinic acetylcholine receptor (mAChR) agonist, is a sialogogue that possibly stimulates SSN neurons in addition to the salivary glands themselves because it can cross the blood-brain barrier (BBB). In the present study, we examined immunoreactivities for mAChR subtypes in SSN neurons retrogradely labeled with a fluorescent tracer in neonatal rats.
View Article and Find Full Text PDFTo evaluate the role of the lateral hypothalamic area (LH) in the masticatory-salivary reflex, we investigated submandibular salivary secretion and the electromyographic (EMG) activity of the jaw-closer masseter muscle in sham-operated rats and rats with unilateral LH lesions. One week prior to surgery and recording, the rats were given daily experience of eating pellets; powder; or hard, medium or soft mash, all of which were composed of laboratory chow. Salivary secretion was induced during eating and grooming behavior.
View Article and Find Full Text PDFWe examined the effects of orexins on the reflex swallowing using anesthetized rats. Orexins were administered into the fourth ventricle. Swallowing was induced by repeated electrical stimulation of the central cut end of the superior laryngeal nerve (SLN) and was identified by the electromyogram lead penetrated the mylohyoid muscle through bipolar electrodes.
View Article and Find Full Text PDFTo evaluate the role of the masticatory area in the cerebral cortex in the masticatory-salivary reflex, we investigated submandibular salivary secretion, jaw-movement trajectory and electromyographic activity of the jaw-opener (digastric) and jaw-closer (masseter) muscles evoked by repetitive electrical stimulation of the cortical masticatory area in anesthetized rats. Rats have two cortical masticatory areas: the anterior area (A-area) in the orofacial motor cortex, and the posterior area (P-area) in the insular cortex. Our defined P-area extended more caudally than the previous reported one.
View Article and Find Full Text PDFThe superior salivatory nucleus (SSN) contains preganglionic parasympathetic neurons to the submandibular and sublingual salivary glands. Cevimeline, a muscarinic acetylcholine receptor agonist, stimulates the salivary glands and is presently used as sialogogue in the treatment of dry mouth. Since cevimeline passes through the blood-brain barrier, it is also able to act on muscarinic acetylcholine receptors in the central nervous system.
View Article and Find Full Text PDFThe effect of ghrelin on rhythmic reflex swallowing was examined in urethane-chloralose anesthetized rats. Swallowing was monitored by recording electromyographic activities of the suprahyoid muscle. Fourth ventricular administration of ghrelin decreased swallowing frequency during electrical stimulation of the central cut end of the superior laryngeal nerve (SLN stimulation).
View Article and Find Full Text PDFThe primary parasympathetic center of the submandibular and sublingual salivary glands is the superior salivatory (SS) nucleus, and its neurons receive excitatory (glutamatergic) and inhibitory (GABAergic and glycinergic) synaptic transmissions in rats. In the present study, we focused on the postnatal development of inhibitory transmission to SS neurons. Gramicidin-perforated whole-cell patch-clamp recordings were performed in rat brainstem slices on postnatal day 2 (P2)-P14.
View Article and Find Full Text PDFCevimeline, a therapeutic drug for xerostomia, is an agonist of muscarinic acetylcholine receptors (mAChRs), and directly stimulates the peripheral mAChRs of the salivary glands. Since cevimeline is distributed in the brain after its oral administration, it is possible that it affects the central nervous system. However, it is unknown how cevimeline affects the superior salivatory (SS) neurons, which control submandibular salivation.
View Article and Find Full Text PDFThe superior salivatory nucleus (SSN) is the primary parasympathetic center controlling submandibular salivatory secretion. Our previous electrophysiological study revealed that many SSN neurons receive GABAergic and glycinergic synaptic inputs. In the present study, we examined the distribution of GABAergic and glycinergic nerve terminals, GABA(A) receptors in the SSN, and the origin of GABAergic nerve terminals innervating the SSN.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
February 2009
The effects of fourth ventricular administration of ghrelin on motility of the proximal stomach were examined in anesthetized rats. Intragastric pressure (IGP) was measured using a balloon situated in the proximal part of the stomach. Administration of ghrelin into the fourth ventricle induced relaxation of the proximal stomach in a dose-dependent manner.
View Article and Find Full Text PDFThe primary parasympathetic center of the submandibular and sublingual salivary glands is the superior salivatory (SS) nucleus, neurons of which receive excitatory (glutamatergic) and inhibitory (GABAergic and glycinergic) synaptic transmissions in rats. In the present study, to examine postnatal neural development, we focused on inhibitory transmission to the SS neurons in neonatal rats from postnatal day 2 (P2) to P14. Conventional and gramicidin-perforated whole-cell patch-clamp techniques were applied to the neurons in brainstem slices.
View Article and Find Full Text PDFATP has been shown to excite neurons in various regions of the central nervous system. Whereas immunohistochemical studies show P2X receptors in the area postrema, the responsiveness of area postrema neurons to extracellular ATP has not been studied. To investigate the effects of purinoceptor activation on area postrema neuronal excitability, we performed whole-cell recordings from area postrema neurons in rat brain slices.
View Article and Find Full Text PDFWe investigated the role of peripheral N-methyl-D-aspartate (NMDA) receptors in the myenteric plexus in mediating nonadrenergic noncholinergic (NANC) nitrergic relaxation of the lower esophageal sphincter (LES). Isometric contraction of LES strips from Japanese White rabbits was measured. NANC relaxation was induced by KCl (30 mM) in the presence of atropine and guanethidine.
View Article and Find Full Text PDFWhole-cell recordings were performed to examine the morphological properties of electrophysiologically classified area postrema (AP) neurons in rat brain slices. Using electrophysiological criteria, AP neurons were subdivided into three groups: (1) cells displaying both the hyperpolarization-activated cation current (I(h)) and the fast transient outward current (fast I(to)); (2) cells displaying only the fast I(to); (3) cells displaying only the slow I(to). All AP neurons had a single axon that was distinctly thinner than the cells' dendrites.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
February 2006
Effects of neuropeptide Y (NPY) on motility of the proximal stomach was examined in anesthetized rats. Intragastric pressure was measured using a balloon situated in the proximal part of the stomach. Administration of NPY into the fourth ventricle induced relaxation of the proximal stomach in a dose-dependent manner.
View Article and Find Full Text PDFThe origin of sensory nerves that innervate the submandibular salivary gland was investigated in the rat. After application of wheat germ agglutinin-horseradish peroxidase to the cut endings of the sympathetic and parasympathetic nerve branches at the hilus of the gland, labeled cells were mainly found in the dorsal root ganglia and the trigeminal ganglion, respectively. The labeled neurons in these ganglia were of various sizes compared to unlabeled neurons, suggesting that the sensory nerves of the gland conduct various modalities of sensory information.
View Article and Find Full Text PDFWe investigated the functions of nicotinic receptor activation on area postrema neurons by making whole-cell recordings in rat brainstem slices. Excitatory responses to nicotine application were found in approximately 78% (35/45) of all cells tested. Responsive cells included both the cells that display the hyperpolarization-activated cation current (I(h)) and cells that do not display I(h).
View Article and Find Full Text PDFArea postrema neurons mediate various autonomic responses, including emesis. We examined the effects of propofol, a widely used anesthetic with antiemetic properties, on the hyperpolarization-activated cation current (Ih) in rat area postrema neurons using a slice patch-clamp technique. Although propofol suppressed Ih of area postrema neurons in a dose-dependent manner that was similar to what we observed for the hippocampal CA1 neurons, the IC50 for Ih in area postrema neurons (38 microM) was more than six times less than that found for hippocampal CA1 neurons (235 microM).
View Article and Find Full Text PDF