Publications by authors named "Ryuji Igarashi"

Quantum sensing using the fluorescent nanodiamond (FND) nitrogen-vacancy center enables physical/chemical measurements of the microenvironment, although application of such measurements in living mammals poses significant challenges due to the unknown biodistribution and toxicity of FNDs, the limited penetration of visible light for quantum state manipulation/measurement, and interference from physiological motion. Here, we describe a microenvironmental thermometry technique using FNDs in rat mammary epithelium, an important model for mammary gland biology and breast cancer research. FNDs were injected directly into the mammary gland.

View Article and Find Full Text PDF
Article Synopsis
  • * To improve their ability to sense various physicochemical signals, grafting hydrophilic polymers like poly(ethylene glycol) (PEG) on NDs has been explored, particularly to minimize protein adsorption.
  • * This study investigates the relationship between grafting conditions (like pH and molecular weight), crowding of PEG on NDs, and their effectiveness in preventing protein adsorption, demonstrating significant improvement in reduce lung accumulation after intravenous injection in mice.
View Article and Find Full Text PDF

Nanodiamonds containing fluorescent Nitrogen-Vacancy (NV) centers are the smallest single particles, of which a magnetic resonance spectrum can be recorded at room temperature using optically-detected magnetic resonance (ODMR). By recording spectral shift or changes in relaxation rates, various physical and chemical quantities can be measured such as the magnetic field, orientation, temperature, radical concentration, pH or even NMR. This turns NV-nanodiamonds into nanoscale quantum sensors, which can be read out by a sensitive fluorescence microscope equipped with an additional magnetic resonance upgrade.

View Article and Find Full Text PDF

5 nanometer sized detonation nanodiamonds (DNDs) are studied as potential single-particle labels for distance measurements in biomolecules. Nitrogen-vacancy (NV) defects in the crystal lattice can be addressed through their fluorescence and optically-detected magnetic resonance (ODMR) of a single particle can be recorded. To achieve single-particle distance measurements, we propose two complementary approaches based on spin-spin coupling or optical super-resolution imaging.

View Article and Find Full Text PDF

Detonation nanodiamonds (DNDs) are a class of very small and spherical diamond nanocrystals. They are used in polymer reinforcement materials or as drug delivery systems in the field of nanomedicine. Synthesized by detonation, only the final deaggregation step down to the single-digit nanometer size (<10 nm) unfolds their full potential.

View Article and Find Full Text PDF

We constructed a highly sensitive fluorescence wide-field imaging system with a microwave source, implanted fluorescent diamond microparticles ("microdiamonds") subcutaneously into the dorsal skin of a mouse after sacrifice, and demonstrated the feasibility of using optically detected magnetic resonance (ODMR) to measure internal body temperature in a mammal.

View Article and Find Full Text PDF

Fluorescence imaging is a critical tool to understand the spatial distribution of biomacromolecules in cells and , providing information on molecular dynamics and interactions. Numerous valuable insights into biological systems have been provided by the specific detection of various molecular species. However, molecule-selective detection is often hampered by background fluorescence, such as cell autofluorescence and fluorescence leakage from molecules stained by other dyes.

View Article and Find Full Text PDF

Determination of optimal measurement parameters is essential for measurement experiments. They can be manually optimized if the linear correlation between them and the corresponding signal quality is known or easily determinable. However, in practice, this correlation is often nonlinear and not known a priori; hence, complicated trial and error procedures are employed for finding optimal parameters while avoiding local optima.

View Article and Find Full Text PDF

Nonlocalized mechanical forces, such as vibrations and acoustic waves, influence a wide variety of biological processes from development to homeostasis. Animals cope with these stimuli by modifying their behavior. Understanding the mechanisms underlying such behavioral modification requires quantification of neural activity during the behavior of interest.

View Article and Find Full Text PDF

We demonstrate room-temperature C hyperpolarization by dynamic nuclear polarization (DNP) using optically polarized triplet electron spins in two polycrystalline systems: pentacene-doped [carboxyl-C] benzoic acid and microdiamonds containing nitrogen-vacancy (NV) centers. For both samples, the integrated solid effect (ISE) is used to polarize the C spin system in magnetic fields of 350-400 mT. In the benzoic acid sample, the C spin polarization is enhanced by up to 0.

View Article and Find Full Text PDF

Fluorescent nanodiamonds containing nitrogen-vacancy centers have attracted attention as nanoprobes for temperature measurements in microenvironments, potentially enabling the measurement of intracellular temperature distributions and temporal changes. However, to date, the time resolution and accuracy of the temperature determinations using fluorescent nanodiamonds have been insufficient for wide-field fluorescence imaging. Here, we describe a method for highly accurate wide-field temperature imaging using fluorescent nanodiamonds for optically detected magnetic resonance (ODMR) measurements.

View Article and Find Full Text PDF

The rotation of an object cannot be fully tracked without understanding a set of three angles, namely, roll, pitch, and yaw. Tracking these angles as a three-degrees-of-freedom (3-DoF) rotation is a fundamental measurement, facilitating, for example, attitude control of a ship, image stabilization to reduce camera shake, and self-driving cars. Until now, however, there has been no method to track 3-DoF rotation to measure nanometer-scale dynamics in biomolecules and live cells.

View Article and Find Full Text PDF

We developed a novel magnetometer that employs negatively charged nitrogen-vacancy (NV) centers in diamond, to detect the magnetic field generated by magnetic nanoparticles (MNPs) for biomedical applications. The compact probe system is integrated into a fiber-optics platform allowing for a compact design. To detect signals from the MNPs effectively, we demonstrated, for the first time, the application of an alternating current (AC) magnetic field generated by the excitation coil of several hundred microteslas for the magnetization of MNPs in diamond quantum sensing.

View Article and Find Full Text PDF

Nanoscale measurements provide insight into the nano world. For instance, nanometric spatiotemporal distribution of intracellular pH is regulated by and regulates a variety of biological processes. However, there is no general method to fabricate nanoscale pH sensors.

View Article and Find Full Text PDF

Quantum information processing requires quantum registers based on coherently interacting quantum bits. The dipolar couplings between nitrogen vacancy (NV) centres with nanometre separation makes them a potential platform for room-temperature quantum registers. The fabrication of quantum registers that consist of NV centre arrays has not advanced beyond NV pairs for several years.

View Article and Find Full Text PDF

Nanodiamonds containing negatively charged nitrogen-vacancy (NV) centers are versatile nanosensors thanks to their optical and spin properties. While currently most fluorescent nanodiamonds in use have at least a size of a few tens of nanometers, the challenge lies in engineering the smallest nanodiamonds containing a single NV defect. Such a tiny nanocrystal with a single NV center is an "optical spin label" for biomolecules, which can be detected in a fluorescence microscope.

View Article and Find Full Text PDF

Background: Nanodiamonds (NDs) provide a unique multitasking system for drug delivery and fluorescent imaging in biological environments. Owing to their quantum properties, NDs are expected to be employed as multifunctional probes in the future for the accurate visualization of biophysical parameters such as temperature and magnetic fields. However, the use of NDs for the selective targeting of the biomolecules of interest within a complicated biological system remains a challenge.

View Article and Find Full Text PDF

Fluorescent nanodiamonds (FNDs) have been attracting much attention as promising therapeutic agents and probes for bioimaging and nanosensing. For their biological applications, several hydrophilizing methods to enhance FND colloidal stability have been developed to suppress their aggregation and the nonspecific adsorption to biomolecules in complex biomedical environments. However, these methods involve several complicated synthetic and purification steps, which prohibit the use of FNDs for bioapplications by biologists.

View Article and Find Full Text PDF

Physical forces are transduced into chemical reactions, thereby ultimately making a large impact on the whole-animal level phenotypes such as homeostasis, development and behavior. To understand mechano-chemical transduction, mechanical input should be quantitatively delivered with controllable vibration properties⁻frequency, amplitude and duration, and its chemical output should be noninvasively quantified in an unconstrained animal. However, such an experimental system has not been established so far.

View Article and Find Full Text PDF

The development of sensors to estimate physical properties, and their temporal and spatial variation, has been a central driving force in scientific breakthroughs. In recent years, nanosensors based on quantum measurements, such as nitrogen-vacancy centres (NVCs) in nanodiamonds, have been attracting much attention as ultrastable, sensitive, accurate and versatile physical sensors for quantitative cellular measurements. However, the nanodiamonds currently available for use as sensors have diameters of several tens of nanometres, much larger than the usual size of a protein.

View Article and Find Full Text PDF

Recently, the importance of conformational changes in actin filaments induced by mechanical stimulation of a cell has been increasingly recognized, especially in terms of mechanobiology. Despite its fundamental importance, however, long-term observation of a single actin filament by fluorescent microscopy has been difficult because of the low photostability of traditional fluorescent molecules. This paper reports a novel molecular labeling system for actin filaments using fluorescent nanodiamond (ND) particles harboring nitrogen-vacancy centers; ND has flexible chemical modifiability, extremely high photostability and biocompatibility, and provides a variety of physical information quantitatively via optically detected magnetic resonance (ODMR) measurements.

View Article and Find Full Text PDF

Withdrawal escape response of C. elegans to nonlocalized vibration is a useful behavioral paradigm to examine mechanisms underlying mechanosensory behavior and its memory-dependent change. However, there are very few methods for investigating the degree of vibration frequency, amplitude and duration needed to induce behavior and memory.

View Article and Find Full Text PDF

The impeccable photostability of fluorescent nanodiamonds (FNDs) is an ideal property for use in fluorescence imaging of proteins in living cells. However, such an application requires highly specific labeling of the target proteins with FNDs. Furthermore, the surface of unmodified FNDs tends to adsorb biomolecules nonspecifically, which hinders the reliable targeting of proteins with FNDs.

View Article and Find Full Text PDF

Single-molecule fluorescence measurements of biological samples frequently suffer from background autofluorescence originating from fluorescent materials pre-existing in living samples, and from unstable photo-physical properties of fluorescent labeling molecules. In this study, we first describe our method of selective imaging of nanodiamonds containing nitrogen-vacancy centers, promising fluorescent color centers, by a combination of optically detected magnetic resonance. The resultant images exhibit perfect elimination of extraneous fluorescence in real-time microscope observations.

View Article and Find Full Text PDF

A major goal of neuroscience studies is to identify the neurons and molecules responsible for memory. Mechanosensory habituation in Caenorhabditis elegans is a simple form of learning and memory, in which a circuit of several sensory neurons and interneurons governs behavior. However, despite the usefulness of this paradigm, there are hardly any systems for rapid and accurate behavioral genetic analysis.

View Article and Find Full Text PDF