Ligand binding site prediction is a crucial initial step in structure-based drug discovery. Although several methods have been proposed previously, including those using geometry based and machine learning techniques, their accuracy is considered to be still insufficient. In this study, we introduce an approach that leverages a graph transformer neural network to rank the results of a geometry-based pocket detection method.
View Article and Find Full Text PDFAutomatic design of molecules with specific chemical and biochemical properties is an important process in material informatics and computational drug discovery. In this study, we designed a novel coarse-grained tree representation of molecules (Reversible Junction Tree; "RJT") for the aforementioned purposes, which is reversely convertible to the original molecule without external information. By leveraging this representation, we further formulated the molecular design and optimization problem as a tree-structure construction using deep reinforcement learning ("RJT-RL").
View Article and Find Full Text PDFComputational material discovery is under intense study owing to its ability to explore the vast space of chemical systems. Neural network potentials (NNPs) have been shown to be particularly effective in conducting atomistic simulations for such purposes. However, existing NNPs are generally designed for narrow target materials, making them unsuitable for broader applications in material discovery.
View Article and Find Full Text PDFG-protein-coupled receptors (GPCR) are a family of membrane receptors that play important roles in the regulation of various physiological phenomena. LPA receptors (LPA1-6) are members of the class A GPCRs, which transduce a lysophosphatidic acid (LPA) signal across the cell membrane and evoke various responses, including cellular survival, proliferation, differentiation, and migration. The crystal structure of LPA6 revealed a gap between its transmembrane helices (TMs), which is opened toward the membrane side.
View Article and Find Full Text PDFMembers of the leucine-rich repeat-containing 8 (LRRC8) protein family, composed of the five LRRC8A-E isoforms, are pore-forming components of the volume-regulated anion channel (VRAC). LRRC8A and at least one of the other LRRC8 isoforms assemble into heteromers to generate VRAC transport activities. Despite the availability of the LRRC8A structures, the structural basis of how LRRC8 isoforms other than LRRC8A contribute to the functional diversity of VRAC has remained elusive.
View Article and Find Full Text PDFAutotaxin (ATX, also known as ENPP2) is a predominant lysophosphatidic acid (LPA)-producing enzyme in the body, and LPA regulates various physiological functions, such as angiogenesis and wound healing, as well as pathological functions, including proliferation, metastasis, and fibrosis, via specific LPA receptors. Therefore, the ATX-LPA axis is a promising therapeutic target for dozens of diseases, including cancers, pulmonary and liver fibroses, and neuropathic pain. Previous structural studies revealed that the catalytic domain of ATX has a hydrophobic pocket and a hydrophobic channel; these serve to recognize the substrate, lysophosphatidylcholine (LPC), and deliver generated LPA to LPA receptors on the plasma membrane.
View Article and Find Full Text PDFPIWI-clade Argonaute proteins associate with PIWI-interacting RNAs (piRNAs), and silence transposons in animal gonads. Here, we report the crystal structure of the Drosophila PIWI-clade Argonaute Piwi in complex with endogenous piRNAs, at 2.9 Å resolution.
View Article and Find Full Text PDFAn Amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
December 2020
Xenobiotic and metabolite extrusion is an important process for the proper functions of cells and their compartments, including acidic organelles. MATE (multidrug and toxic compound extrusion) is a large family of secondary active transporters involved in the transport of various compounds across cellular and organellar membranes, and is present in the three domains of life. The major substrates of the bacterial MATE transporters are cationic compounds, including clinically important antibiotics, and thereby MATE transporters confer multi-drug resistance to pathogenic bacteria.
View Article and Find Full Text PDFThe L-type amino acid transporter 1 (LAT1 or SLC7A5) transports large neutral amino acids across the membrane and is crucial for brain drug delivery and tumor growth. LAT1 forms a disulfide-linked heterodimer with CD98 heavy chain (CD98hc, 4F2hc or SLC3A2), but the mechanism of assembly and amino acid transport are poorly understood. Here we report the cryo-EM structure of the human LAT1-CD98hc heterodimer at 3.
View Article and Find Full Text PDFActa Crystallogr F Struct Biol Commun
May 2019
Proton-dependent oligopeptide transporters (POTs) belong to the major facilitator superfamily (MFS) and transport dipeptides and tripeptides from the extracellular environment into the target cell. The human POTs PepT1 and PepT2 are also involved in the absorption of various orally ingested drugs. Previously reported structures revealed that the bacterial POTs possess 14 helices, of which H1-H6 and H7-H12 constitute the typical MFS fold and the residual two helices are involved in the cytoplasmic linker.
View Article and Find Full Text PDFThe RNA-guided DNA endonuclease Cas9 cleaves double-stranded DNA targets bearing a protospacer adjacent motif (PAM) and complementarity to an RNA guide. Unlike other Cas9 orthologs, Corynebacterium diphtheriae Cas9 (CdCas9) recognizes the promiscuous NNRHHHY PAM. However, the CdCas9-mediated PAM recognition mechanism remains unknown.
View Article and Find Full Text PDFThe iron ion is an essential cofactor in several vital enzymatic reactions, such as DNA replication, oxygen transport, and respiratory and photosynthetic electron transfer chains, but its excess accumulation induces oxidative stress in cells. Vacuolar iron transporter 1 (VIT1) is important for iron homeostasis in plants, by transporting cytoplasmic ferrous ions into vacuoles. Modification of the VIT1 gene leads to increased iron content in crops, which could be used for the treatment of human iron deficiency diseases.
View Article and Find Full Text PDFActa Crystallogr F Struct Biol Commun
December 2018
The type VI secretion system (T6SS) comprises needle-shaped multisubunit complexes that play a role in the microbial defense systems of Gram-negative bacteria. Some Gram-negative bacteria harboring a T6SS deliver toxic effector proteins into the cytoplasm or periplasm of competing bacteria in order to lyse and kill them. To avoid self-cell disruption, these bacteria have cognate immunity proteins that inhibit their toxic effector proteins.
View Article and Find Full Text PDF-methyladenosine (mA), a major modification of messenger RNAs (mRNAs), plays critical roles in RNA metabolism and function. In addition to the internal mA, , 2'--dimethyladenosine (mAm) is present at the transcription start nucleotide of capped mRNAs in vertebrates. However, its biogenesis and functional role remain elusive.
View Article and Find Full Text PDFMultidrug and toxic compound extrusion (MATE) transporters efflux toxic compounds using a Na or H gradient across the membrane. Although the structures of MATE transporters have been reported, the cation-coupled substrate transport mechanism remains controversial. Here we report crystal structures of VcmN, a Vibrio cholerae MATE transporter driven by the H gradient.
View Article and Find Full Text PDFENPP1 (Ecto-nucleotide pyrophosphatase phosphodiesterase 1), a type II transmembrane glycoprotein, hydrolyzes ATP to produce AMP and diphosphate, thereby inhibiting bone mineralization. A recent study showed that ENPP1 also preferentially hydrolyzes 2'3'-cGAMP (cyclic GMP-AMP) but not its linkage isomer 3'3'-cGAMP, and negatively regulates the cGAS-STING pathway in the innate immune system. Here, we present the high-resolution crystal structures of ENPP1 in complex with 3'3'-cGAMP and the reaction intermediate pA(3',5')pG.
View Article and Find Full Text PDFMagnesium ions (Mg) are crucial for various biological processes. A bacterial Mg channel, MgtE, tightly regulates the intracellular Mg concentration. Previous X-ray crystal structures showed that MgtE forms a dimeric structure composed of a total of 10 transmembrane α helices forming a central pore, and intracellular soluble domains constituting a Mg sensor.
View Article and Find Full Text PDFChannelrhodopsins (ChRs) are microbial light-gated ion channels with a retinal chromophore and are widely utilized in optogenetics to precisely control neuronal activity with light. Despite increasing understanding of their structures and photoactivation kinetics, the atomistic mechanism of light gating and ion conduction remains elusive. Here, we present an atomic structural model of a chimeric ChR in a precursor state of the channel opening determined by an accurate hybrid molecular simulation technique and a statistical theory of internal water distribution.
View Article and Find Full Text PDFSecondary active transporters translocate their substrates using the electrochemical potentials of other chemicals and undergo large-scale conformational changes. Despite extensive structural studies, the atomic details of the transport mechanism still remain elusive. We performed a series of all-atom molecular dynamics simulations of the triose-phosphate/phosphate translocator (TPT), which exports organic phosphates in the chloroplast stroma in strict counter exchange with inorganic phosphate (P).
View Article and Find Full Text PDFThe RNA-guided endonuclease Cas9 cleaves its target DNA and is a powerful genome-editing tool. However, the widely used Cas9 enzyme (SpCas9) requires an NGG protospacer adjacent motif (PAM) for target recognition, thereby restricting the targetable genomic loci. Here, we report a rationally engineered SpCas9 variant (SpCas9-NG) that can recognize relaxed NG PAMs.
View Article and Find Full Text PDFNat Struct Mol Biol
September 2018
Maintenance of cell volume against osmotic change is crucial for proper cell functions. Leucine-rich repeat-containing 8 proteins are anion-selective channels that extrude anions to decrease the cell volume on cellular swelling. Here, we present the structure of human leucine-rich repeat-containing 8A, determined by single-particle cryo-electron microscopy.
View Article and Find Full Text PDFMagnesium ions (Mg) are divalent cations essential for various cellular functions. Mg homeostasis is maintained through Mg channels such as MgtE, a prokaryotic Mg channel whose gating is regulated by intracellular Mg levels. Our previous crystal structure of MgtE in the Mg-bound, closed state revealed the existence of seven crystallographically-independent Mg-binding sites, Mg1-Mg7.
View Article and Find Full Text PDFMulitidrug and toxic compound extrusion (MATE) family transporters export xenobiotics to maintain cellular homeostasis. The human MATE transporters mediate the excretion of xenobiotics and cationic clinical drugs, whereas some plant MATE transporters are responsible for aluminum tolerance and secondary metabolite transport. Here we report the crystal structure of the eukaryotic MATE transporter from Arabidopsis thaliana, at 2.
View Article and Find Full Text PDF