J Med Chem
July 2013
We report herein the discovery of the human immunodeficiency virus type-1 (HIV-1) integrase inhibitors dolutegravir (S/GSK1349572) (3) and S/GSK1265744 (4). These drugs stem from a series of carbamoyl pyridone analogues designed using a two-metal chelation model of the integrase catalytic active site. Structure-activity studies evolved a tricyclic series of carbamoyl pyridines that demonstrated properties indicative of once-daily dosing and superior potency against resistant viral strains.
View Article and Find Full Text PDFThis work is a continuation of our initial discovery of a potent monocyclic carbamoyl pyridone human immunodeficiency virus type-1 (HIV-1) integrase inhibitor that displayed favorable antiviral and pharmacokinetic properties. We report herein a series of bicyclic carbamoyl pyridone analogues to address conformational issues from our initial SAR studies. This modification of the core unit succeeded to deliver low nanomolar potency in standard antiviral assays.
View Article and Find Full Text PDFOur group has focused on expanding the scope of a two-metal binding pharmacophore concept to explore HIV-1 integrase inhibitors through medicinal chemistry efforts to design novel scaffolds which allow for improvement of pharmacokinetic (PK) and resistance profiles. A novel chelating scaffold was rationally designed to effectively coordinate two magnesium cofactors and to extend an aromatic group into an optimal hydrophobic pharmacophore space. The new chemotype, consisting of a carbamoyl pyridone core unit, shows high inhibitory potency in both enzymatic and antiviral assay formats with low nM IC₅₀ and encouraging potency shift effects in the presence of relevant serum proteins.
View Article and Find Full Text PDFThe medicinal chemistry and structure-activity relationships for a novel series of 7-benzyl-4-hydroxy-1,5-naphthyridin-2(1H)-one HIV-integrase inhibitors are disclosed. Substituent effects were evaluated at the N-1, C-3, and 7-benzyl positions of the naphthyridinone ring system. Low nanomolar IC(50) values were achieved in an HIV-integrase strand transfer assay with both carboxylic ester and carboxamide groups at C-3.
View Article and Find Full Text PDFThe two-metal binding model we previously reported as an inhibition mechanism of HIV integrase (HIV IN) produced a new direction in modification of 2-hydroxy-3-heteroaryl acrylic acid inhibitors (HHAAs). Here we present a novel series of HIV IN inhibitors having a 3-hydroxy-1,5-dihydro-pyrrol-2-one moiety (HDPO) as an advanced analog of HHAAs. This cyclic modification of the chelating region of HHAA produces a favorable configuration to coordinate two-metal ions in HIV IN, which consequently gave improvements in not only enzymatic assay but also antiviral cell based assay in many cases.
View Article and Find Full Text PDFWe present a novel series of HIV integrase inhibitors, showing IC(50)s ranging from 0.01 to over 370microM in an enzymatic assay. Furthermore, pharmacophore modeling study for the inhibitors was carried out to elucidate the structure-activity relationships.
View Article and Find Full Text PDFWe propose a two-metal binding model as a potential mechanism of chelating inhibitors against HIV integrase (HIV IN) represented by 2-hydroxy-3-heteroaryl acrylic acids (HHAAs). Potential inhibitors would bind to two metal ions in the active site of HIV IN to prevent human DNA from undergoing the integration reaction. Correlation of the results of metal (Mg(2+) and Mn(2+)) titration studies with HIV IN inhibition for a series of active and inactive compounds provides support for the model.
View Article and Find Full Text PDF