Carcinogenesis is an important chronic toxicity of metals and metalloids, although their mechanisms of action are still unclear. Comparison of gene expression patterns induced by carcinogenic metals, metalloids, and model carcinogens would give an insight into understanding of their carcinogenic mechanisms. In this study, we examined the gene expression alteration in human hepatoma cell line, HepG2, after exposing to two metals (cadmium and nickel), a metalloid (arsenic), and three model carcinogenic chemicals N-dimethylnitrosoamine (DMN), 12-O-tetradecanoylphorbol-13-acetate (TPA), and tetrachloroethylene (TCE) using DNA microarrays with 8,795 human genes.
View Article and Find Full Text PDFEnviron Sci Technol
May 2007
Microarray technology is proving to be a useful tool to classify undefined environmental toxicants, to investigate underlying mechanisms of toxicity, and to identify candidate toxicant-specific genetic markers by examining global effects of putative toxicants on gene expression profiles. The aim of this study was to evaluate the toxicities of six heavy metals through the comparison with gene expression patterns induced by well-known chemicals. For this purpose, we first identified the genes altered specifically in HepG2 under the exposure of 2,3-dimethoxy-1,4-naphthoquinone (DMNQ), phenol, and N-nitrosodimethylamine (DMN), which were selected as the model chemicals, using DNA microarray.
View Article and Find Full Text PDF