Publications by authors named "Rytis Jurkonis"

Targeted and controlled techniques of intratumoral delivery of chemotherapeutic agents are under extensive development, since they diminish detrimental side-effects of conventional anticancer drugs. We investigated the effectiveness of chemotherapy using bleomycin (1 mg/ml) and Sonovue microbubbles combined with: electroporation (EP), mainly designed for subcutaneous tumor therapy, and sonoporation (SP) - for deeper localized tumors. Research was performed on hepatoma MH-22A tumors in murine models, exposed to EP or SP and combined (EP + SP) treatment.

View Article and Find Full Text PDF

Arterial stiffness is an independent predictor of cardiovascular events. The motion of arterial tissues during the cardiac cycle is important as a mechanical deformation representing vessel elasticity and is related to arterial stiffness. In addition, arterial pulsation is the main source of endogenous tissue micro-motions currently being studied for tissue elastography.

View Article and Find Full Text PDF

Ultrasound echoscopy technologies are continuously evolving towards new modalities including quantitative parameter imaging, elastography, 3D scanning, and others. The development and analysis of new methods and algorithms require an adequate digital simulation of radiofrequency (RF) signal transformations. The purpose of this paper is the quantitative evaluation of RF signal simulation uncertainties in resolution and contrast reproduction with the model of a phased array transducer.

View Article and Find Full Text PDF

Background: Degree of portal hypertension (PH) is the most important prognostic factor for the decompensation of liver cirrhosis and death, therefore adequate care for patients with liver cirrhosis requires timely detection and evaluation of the presence of clinically significant PH (CSPH) and severe PH (SPH). As the most accurate method for the assessment of PH is an invasive direct measurement of hepatic venous pressure gradient (HVPG), the search for non-invasive methods to diagnose these conditions is actively ongoing.

Aim: To evaluate the feasibility of parameters of endogenously induced displacements and strain of liver to assess degree of PH.

View Article and Find Full Text PDF

We aimed to estimate tissue displacements' parameters in midbrain using ultrasound radiofrequency (RF) signals and to compare diagnostic ability of this RF transcranial sonography (TCS)-based dynamic features of disease affected tissues with conventional TCS (cTCS) and magnetic resonance imaging (MRI) while differentiating patients with Parkinson's disease (PD) from healthy controls (HC). US tissue displacement waveform parametrization by RF TCS for endogenous brain tissue motion, standard neurological examination, cTCS and MRI data collection were performed for 20 PD patients and for 20 age- and sex-matched HC in a prospective manner. Three logistic regression models were constructed, and receiver operating characteristic (ROC) curve analyses were applied.

View Article and Find Full Text PDF

Motion extracted from the carotid artery wall provides unique information for vascular health evaluation. Carotid artery longitudinal wall motion corresponds to the multiphasic arterial wall excursion in the direction parallel to blood flow during the cardiac cycle. While this motion phenomenon has been well characterized, there is a general lack of awareness regarding its implications for vascular health assessment or even basic vascular physiology.

View Article and Find Full Text PDF

We aim to estimate brain tissue displacements in the medial temporal lobe (MTL) using backscattered ultrasound radiofrequency (US RF) signals, and to assess the diagnostic ability of brain tissue displacement parameters for the differentiation of patients with Alzheimer's disease (AD) from healthy controls (HC). Standard neuropsychological evaluation and transcranial sonography (TCS) for endogenous brain tissue motion data collection are performed for 20 patients with AD and for 20 age- and sex-matched HC in a prospective manner. Essential modifications of our previous method in US waveform parametrization, raising the confidence of micrometer-range displacement signals in the presence of noise, are done.

View Article and Find Full Text PDF

The purpose of this paper is a quantification of displacement parameters used in the imaging of brain tissue endogenous motion using ultrasonic radiofrequency (RF) signals. In a preclinical study, an ultrasonic diagnostic system with RF output was equipped with dedicated signal processing software and subject head-ultrasonic transducer stabilization. This allowed the use of RF scanning frames for the calculation of micrometer-range displacements, excluding sonographer-induced motions.

View Article and Find Full Text PDF

Objectives: The paper presents the results of an initial clinical study, which were obtained using the strain elastography imaging method based on radio frequency ultrasound signal analysis.

Methods: The technique employs endogenous motion of the liver induced by beating heart and vascular pulsatility as an excitation source of tissue microdisplacement. The potential for fibrotic tissue characterization was demonstrated using a clinical data set of radio frequency ultrasound signals (23 healthy controls, 21 subjects with hepatitis, and 16 subjects with liver cirrhosis).

View Article and Find Full Text PDF

Objectives: Transcranial ultrasonography (US) is a relatively new neuroimaging modality proposed for early diagnostics of Parkinson disease (PD). The main limitation of transcranial US image-based diagnostics is a high degree of subjectivity caused by low quality of the transcranial images. The article presents a developed image analysis system and evaluates the potential of automated image analysis on transcranial US.

View Article and Find Full Text PDF

In the present study, microbubble (MB) cavitation signal analysis was performed together with calcein release evaluation in both pressure and exposure duration domains of the acoustic field. A passive cavitation detection system was used to simultaneously measure MB scattering and attenuation signals for subsequent extraction efficiency relative to MB cavitation activity. The results indicate that the decrease in the efficiency of extraction of calcein molecules from Chinese hamster ovary cells, as well as cell viability, is associated with MB cavitation activity and can be accurately predicted using inertial cavitation doses up to 0.

View Article and Find Full Text PDF

Ultrasound induced microbubble (MB) cavitation is used to significantly enhance cell membrane permeabilization, thereby allowing delivery of various therapeutic agents into cells. In order to monitor and quantitatively control the extent of cavitation the uniform dosimetry model is needed. In present study we have simultaneously performed quantitative evaluation of three main sonoporation factors: (1) MB concentration, (2) MB cavitation extent, and (3) doxorubicin (DOX) sonotransfer into Chinese hamster ovary cells.

View Article and Find Full Text PDF

Objectives: The efficiency of sonoporation is directly related to microbubble cavitation and can be dependent on the microbubble sonodestruction rate. The objective of this study was to investigate whether the rate of microbubble sonodestruction can be used as a parameter to develop an implicit dosimetric method for sonoporation efficiency evaluation.

Methods: To evaluate the rate of microbubble sonodestruction as a function of the ultrasound (US) peak negative ultrasound pressure, 12-MHz diagnostic US was used in the B-scan mode.

View Article and Find Full Text PDF

The propagation of diagnostic ultrasonic imaging pulses in tissue and their interaction with contrast microbubbles is a complex physical process. Our model driven approach is used to gain better knowledge of the different processes involved in the generation of the backscattered contrast echo. It can be divided into three separable stages: linear and nonlinear wave propagation in tissue, the resulting echo from the pulse interaction with the contrast microbubble, and the propagation of the scattered echo.

View Article and Find Full Text PDF

Two prototype telemedicine systems have been developed: 1) a wireless system for status assessment of cardiology patients (WSCP), 2) a system for medical image management and teleconsultations (IMTS). The former system enables the patient to record an ECG on a personal digital assistant (PDA), view it and send it via a wireless connection. The doctor on duty is then able to view the received ECG and make appropriate decisions, also to apply for consultation by sending the received ECG to the PDA of a cardiology expert.

View Article and Find Full Text PDF

The propagation of diagnostic ultrasonic imaging pulses in tissue and their interaction with contrast micro bubbles is a very complex physical process, which we assumed to be separable into three stages: pulse propagation in tissue, the interaction of the pulse with the contrast bubble, and the propagation of the scattered echo. The model driven approach is used to gain better knowledge of the complex processes involved. A simplified way of field simulation is chosen due to the complexity of the task and the necessity to estimate comparative contributions of each component of the process.

View Article and Find Full Text PDF

The objectives are to investigate the peculiarities of the ultrasound pulse propagation through human extra/intracranial media by mathematical simulation and to confirm the simulation results experimentally by proving the suitability of the ultrasonic time-of-flight measurement method for human intracranial media (IM) physiological non-invasive monitoring. The mathematical model of ultrasound pulse propagation through the human extra/intracranial media is described. The simulation of various physiological phenomena were performed to determine the relationship between the characteristics of the transmitted ultrasound pulse through the human head and the acoustic properties of the IM.

View Article and Find Full Text PDF

Speckle in continuous wave (CW) Doppler has previously been found to cause large variations in detected Doppler power in blood perfusion measurements, where a large number of blood vessels are present in the sample volume. This artifact can be suppressed by using a number of simultaneously transmitted frequencies and averaging the detected signals. To optimize the strategy, statistical properties of speckle in CW ultrasound need to be known.

View Article and Find Full Text PDF