Publications by authors named "Ryther Anderson"

Singlet fission (SF) has been explored as a viable route to improve photovoltaic performance by producing more excitons. Efficient SF is achieved through a high degree of interchromophoric coupling that facilitates electron superexchange to generate triplet pairs. However, strongly coupled chromophores often form excimers that can serve as an SF intermediate or a low-energy trap site.

View Article and Find Full Text PDF

High quantum yield triplets, populated by initially prepared excited singlets, are desired for various energy conversion schemes in solid working compositions like porous MOFs. However, a large disparity in the distribution of the excitonic center of mass, singlet-triplet intersystem crossing (ISC) in such assemblies is inhibited, so much so that a carboxy-coordinated zirconium heavy metal ion cannot effectively facilitate the ISC through spin-orbit coupling. Circumventing this sluggish ISC, singlet fission (SF) is explored as a viable route to generating triplets in solution-stable MOFs.

View Article and Find Full Text PDF

Solar energy conversion requires the working compositions to generate photoinduced charges with high potential and the ability to deliver charges to the catalytic sites and/or external electrode. These two properties are typically at odds with each other and call for new molecular materials with sufficient conjugation to improve charge conductivity but not as much conjugation as to overly compromise the optical band gap. In this work, we developed a semiconducting metal-organic framework (MOF) prepared explicitly through metal-carbodithioate "(-CS)M" linkage chemistry, entailing augmented metal-linker electronic communication.

View Article and Find Full Text PDF

The structures of metal-organic frameworks (MOFs) can be tuned to reproducibly create adsorption properties that enable the use of these materials in fixed-adsorption beds for non-thermal separations. However, with millions of possible MOF structures, the challenge is to find the MOF with the best adsorption properties to separate a given mixture. Thus, computational, rather than experimental, screening is necessary to identify promising MOF structures that merit further examination, a process traditionally done using molecular simulation.

View Article and Find Full Text PDF

Crystalline metal-organic frameworks (MOFs) can assemble chromophoric molecules into a wide range of spatial arrangements, which are controlled by the MOF topology. Like natural light-harvesting complexes (LHCs), the precise arrangement modulates interchromophoric interactions, in turn determining excitonic behavior and migration dynamics. To unveil the key factors that control efficient exciton displacements within MOFs, we first developed linkers with low electronic symmetry (as defined by large transition dipoles) and then assembled them into MOFs.

View Article and Find Full Text PDF

A huge challenge facing scientists is the development of adsorbent materials that exhibit ultrahigh porosity but maintain balance between gravimetric and volumetric surface areas for the onboard storage of hydrogen and methane gas-alternatives to conventional fossil fuels. Here we report the simulation-motivated synthesis of ultraporous metal-organic frameworks (MOFs) based on metal trinuclear clusters, namely, NU-1501-M (M = Al or Fe). Relative to other ultraporous MOFs, NU-1501-Al exhibits concurrently a high gravimetric Brunauer-Emmett-Teller (BET) area of 7310 m g and a volumetric BET area of 2060 m cm while satisfying the four BET consistency criteria.

View Article and Find Full Text PDF

MOF-encapsulated nanoparticles (NP@MOFs) are hybrid, heterogeneous catalysts, where the MOF could boost the activity and selectivity of the encapsulated NP for the reaction of choice by controlling reactant orientation. However, due to overwhelming combinatorics, methods to rapidly identify promising NP + MOF combinations for a given application are needed. Earlier work used a "surrogate" inert pore on top of NP-representative surfaces to generically capture MOF steric effects, hence enabling computational screening to focus on NP composition.

View Article and Find Full Text PDF

Tailoring the structure and chemistry of metal-organic frameworks (MOFs) enables the manipulation of their adsorption properties to suit specific energy and environmental applications. As there are millions of possible MOFs (with tens of thousands already synthesized), molecular simulation has frequently been used to rapidly evaluate the adsorption performance of a large set of MOFs. This allows subsequent experiments to focus only on a small subset of the most promising MOFs.

View Article and Find Full Text PDF

The last decade has witnessed significant advances in the scale-up synthesis of metal-organic frameworks (MOFs) using commercially available and affordable organic linkers. However, the synthesis of MOFs using elongated and/or multitopic linkers to access MOFs with large pore volume and/or various topologies can often be challenging due to multistep organic syntheses involved for linker preparation. In this report, a modular MOF synthesis strategy is developed by utilizing the coordination and covalent bonds formation in one-pot strategy where monoacid-based ligands reacted to form ditopic ligands, which then assembled into a three-dimensional MOF with Zr clusters.

View Article and Find Full Text PDF

Separation of xenon and krypton is highly relevant to several applications such as spent nuclear fuel processing. Molecular simulation has been extensively used to understand the Kr/Xe separation performance of nanoporous materials for adsorption-based technologies but less frequently for membrane-based technologies. Motivated by recent experimental reports on krypton-selective membranes, herein, we present grand canonical Monte Carlo and biased molecular dynamics simulations (using adaptive biasing force) to elucidate the nature of adsorption- and diffusion-based Kr/Xe separation mechanisms in a set of nanoporous materials: SAPO-34, ZIF-8, UiO-66, and IRMOF-1.

View Article and Find Full Text PDF