In this paper, a new definition of the entropy of functions and α-entropy points (α≥1) will be introduced. These concepts will be used to explore the possibility of internal disruptions (introducing a virus in the phase space) in order to receive an α-chaotic point.
View Article and Find Full Text PDFThe article presents significant results in research on creating superhydrophobic properties of materials which can be used as an interesting material for use in self-cleaning polymer protective gloves and similar applications where the superhydrophobicity plays a significant role. In this work the influence of laser surface modification of MVQ silicone rubber was investigated. The research was conducted using a nanosecond-pulsed laser at 1060 nm wavelength.
View Article and Find Full Text PDFMicrojoining technologies are crucial for producing reliable electrical connections in modern microelectronic and optoelectronic devices, as well as for the assembly of electronic circuits, sensors, and batteries. However, the production of miniature sensors presents particular difficulties, due to their non-standard designs, unique functionality and applications in various environments. One of the main challenges relates to the fact that common methods such as reflow soldering or wave soldering cannot be applied to making joints to the materials used for the sensing layers (oxides, polymers, graphene, metallic layers) or to the thin metallic layers that act as contact pads.
View Article and Find Full Text PDFIn this paper, we consider chaos of a finite family of continuous functions. As a measure of chaos, we use three types of entropies defined for that family. The first type of entropy is connected with the entropy of semigroups while the second and the third type concern entropy of nonautonomous dynamical systems.
View Article and Find Full Text PDFIn the article a description of the behaviour of metallic layers created in the process of physical vacuum deposition on a composite textile substrates during their cyclical bending process is presented. Either the results of experimental research or the theoretical considerations of changes in the structure resistance as a function of the number of fatigue cycles are presented. It was confirmed mathematically that at the beginning of the bending process, in the case of a small number of bends, single cracks appear on the surface of the layer.
View Article and Find Full Text PDFThis paper describes a method for patterning the graphene layer and gold electrodes on a ceramic substrate using a Nd:YAG nanosecond fiber laser. The technique enables the processing of both layers and trimming of the sensor parameters. The main aim was to develop a technique for the effective and efficient shaping of both the sensory layer and the metallic electrodes.
View Article and Find Full Text PDFThis article presents a new method for the extraction and measurement of the polyurethane layer of Cordura textile composites using optical coherence tomography. The knowledge of coating layer properties in these composites is very important, as it affects mechanical parameters such as stiffness and bending rigidity. Unlike microscopic measurements, which require cross-section samples of the material, the proposed approach is non-invasive.
View Article and Find Full Text PDFThis paper describes a method of laser ablation for improving the hydrophobic properties of vulcanized rubber. The treatment was tested on acrylonitrile rubber (NBR) and styrene butadiene rubber (SBR) containing carbon nanotubes and soot as fillers. The surface layer of the vulcanizates was modified using a nanosecond-pulsed laser at 1060 nm wavelength.
View Article and Find Full Text PDFIn this paper, the notion of a distributionally chaotic point (connected with focusing of an uncountable distributionally scrambled set and its envelope around this point) is introduced. The theorems dealing with the existence of such points for selfmaps of the closed unit interval and the possibilities of approximation of nonautonomous discrete dynamical systems by systems with i-stable and p-DC1 points are proved.
View Article and Find Full Text PDFThis paper presents an analysis of the electrical and thermal properties of miniature transparent heaters for use in a wide range of temperature applications, from 15 K to 350 K. The heater structures were produced in transparent conducting oxide (TCO) layers: indium tin oxide (ITO) and ITO/Ag/ITO on polymer substrates-polyethylene naphthalate (PEN) and polyethylene terephthalate (PET), by direct laser patterning. Thermo-resistors for temperature measurement were created in the same process, with geometry corresponding to the shape of the heating path.
View Article and Find Full Text PDFIn the paper, we consider local aspects of the entropy of nonautonomous dynamical systems. For this purpose, we introduce the notion of a (asymptotical) focal entropy point. The notion of entropy appeared as a result of practical needs concerning thermodynamics and the problem of information flow, and it is connected with the complexity of a system.
View Article and Find Full Text PDFLow-temperature electronics operating in below zero temperatures or even below the lower limit of the common -65 to 125 °C temperature range are essential in medical diagnostics, in space exploration and aviation, in processing and storage of food and mainly in scientific research, like superconducting materials engineering and their applications-superconducting magnets, superconducting energy storage, and magnetic levitation systems. Such electronic devices demand special approach to the materials used in passive elements and sensors. The main goal of this work was the implementation of a fully transparent, flexible cryogenic temperature sensor with graphene structures as sensing element.
View Article and Find Full Text PDF