We report here a new diagnostic approach to the direct detection of HIV in blood or other body fluids that is rapid, sensitive and potentially applicable in a point-of-care setting. The approach follows on the development of a novel BioNanoSensor (BNS) device that utilizes piezoelectric technology to detect the presence of the HIV surface glycoprotein gp120 in a nanoscale format. The detection range of the BNS device for the biomarker gp120 displayed a low-end sensitivity of 6.
View Article and Find Full Text PDFChanges in glycosylation have long been associated with disease. While there are many methods to detect changes in glycosylation, plant derived lectins are often used to determine changes on specific proteins or molecules of interest. One change in glycosylation that has been observed by us and by others is a disease or antigen associated increase in fucosylation on N-linked glycans.
View Article and Find Full Text PDFMicroscale electrodes supplied with an AC field can generate rotational fluid patterns known as AC electroosmosis. In the present study, this effect was used to improve antibody binding on a biosensor surface. Antibodies, like many other large, slow moving biomolecules, tend to suffer from transport limitations during a reaction with a surface-bound receptor.
View Article and Find Full Text PDFThe cell adhesion process and the molecular interactions that determine its kinetics were investigated using a thickness shear mode (TSM) sensor. The goal of this study was to correlate sensor readings with the progression of cell adhesion. In particular, the specific effects of receptor-mediated adhesion, the glycocalyx, and surface charge on initial cell-surface attachment and steady-state adhesion of endothelial cells were investigated.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
January 2006
The interaction of solid particles with various surfaces has been experiencing growing interest in many areas of nanotechnology, colloidal science, and biology. In this paper the interactions of solid particles with the surface of piezoelectric thickness shear mode (TSM) sensors have been studied. A mechanical model has been presented to evaluate the effect of particle loading on the behavior of a TSM sensor.
View Article and Find Full Text PDF