Publications by authors named "Ryszard Kaczka"

Temperate forests are undergoing significant transformations due to the influence of climate change, including varying responses of different tree species to increasing temperature and drought severity. To comprehensively understand the full range of growth responses, representative datasets spanning extensive site and climatic gradients are essential. This study utilizes tree-ring data from 550 sites from the temperate forests of Czechia to assess growth trends of six dominant Central European tree species (European beech, Norway spruce, Scots pine, silver fir, sessile and pedunculate oak) over 1990-2014.

View Article and Find Full Text PDF
Article Synopsis
  • - The study emphasizes the importance of high-resolution annual forest growth maps, using tree-ring width (TRW) data, to better understand forest carbon sequestration and the impact of climate change and drought on forest ecosystems.
  • - By integrating high-resolution Earth observation data with climate and topography information, the researchers found that species-specific models could explain over 52% of variance in tree growth, enhancing the accuracy of growth predictions compared to using just climate and elevation data.
  • - The research successfully generated a map of annual TRW for 2021, demonstrating that combining different data sources can lead to more effective models for forest growth, while also identifying areas where predictions may be less reliable, particularly in climate marginal zones.
View Article and Find Full Text PDF

Variations in the growth of aboveground biomass compartments such as tree stem and foliage significantly influence the carbon cycle of forest ecosystems. Yet the patterns of climate-driven responses of stem and foliage and their modulating factors remain poorly understood. In this study, we investigate the climatic response of Norway spruce (Picea abies) at 138 sites covering wide spatial and site fertility gradients in temperate forests in Central Europe.

View Article and Find Full Text PDF

Radial tree growth is sensitive to environmental conditions, making observed growth increments an important indicator of climate change effects on forest growth. However, unprecedented climate variability could lead to non-stationarity, that is, a decoupling of tree growth responses from climate over time, potentially inducing biases in climate reconstructions and forest growth projections. Little is known about whether and to what extent environmental conditions, species, and model type and resolution affect the occurrence and magnitude of non-stationarity.

View Article and Find Full Text PDF

Compression wood (CW) is a common tissue present in the trunk, branches and roots of mechanically stressed coniferous trees. Its main role is to increase the mechanical strength and regain the vertical orientation of a leaning stem. Compression wood is thought to influence the climate signal in different tree-ring measures.

View Article and Find Full Text PDF

The role of future forests in global biogeochemical cycles will depend on how different tree species respond to climate. Interpreting the response of forest growth to climate change requires an understanding of the temporal and spatial patterns of seasonal climatic influences on the growth of common tree species. We constructed a new network of 310 tree-ring width chronologies from three common tree species (Quercus robur, Pinus sylvestris and Fagus sylvatica) collected for different ecological, management and climate purposes in the south Baltic Sea region at the border of three bioclimatic zones (temperate continental, oceanic, southern boreal).

View Article and Find Full Text PDF

We analyzed growth responses to climate of 24 tree-ring width and four maximum latewood density chronologies from the greater Tatra region in Poland and Slovakia. This network comprises 1183 ring-width and 153 density measurement series from four conifer species (Picea abies (L.) Karst.

View Article and Find Full Text PDF