Publications by authors named "Ryoya Tanahashi"

The arginine transporter Can1 is a multifunctional protein of the conventional yeast . Apart from facilitating arginine uptake, Can1 plays a pivotal role in regulating proline metabolism and maintaining cellular redox balance. Here, we report a novel function of Can1 in the control of yeast biofilm formation.

View Article and Find Full Text PDF
Article Synopsis
  • Proline is one of the most abundant amino acids in beer and grape must, but yeast doesn't fully consume it during fermentation, unlike other amino acids.
  • Previous research found that arginine, another abundant amino acid, inhibits proline usage in many yeast strains.
  • The study identified 11 yeast strains, including two (UCDFST 40-144 and 68-44), that effectively utilize proline while producing alcohol, indicating potential for unique beer products with lower proline levels.
View Article and Find Full Text PDF
Article Synopsis
  • * Researchers focused on the PKA pathway and identified the transcription factor genes MSN2/4 as key regulators of proline utilization during winemaking.
  • * Deleting the SHY1 gene in yeast improved proline consumption and ethanol production, suggesting that manipulating the PKA-Msn2/4-Shy1 pathway could enhance wine yeast efficiency in reducing proline during fermentation.
View Article and Find Full Text PDF

Arginine is a proteinogenic amino acid that organisms additionally exploit both for nitrogen storage and as a stress protectant. The location of arginine, whether intra- or extracellular, is important in maintaining physiological homeostasis. Here, we identified an arginine transporter ortholog of the emerging fungal pathogenic Candida glabrata.

View Article and Find Full Text PDF

The current CRISPR/Cas9 systems in the yeast Saccharomyces cerevisiae cannot be considered a non-genetic modification technology because it requires the introduction of Cas9 and sgRNA into yeast cells using plasmid expression systems. Our present study showed that the yeast genome can be edited without plasmid expression systems by using a commercially available protein transfection reagent and chemically modified sgRNAs.

View Article and Find Full Text PDF

Proline is the most abundant amino acid in wine and beer, because the yeast Saccharomyces cerevisiae hardly assimilates proline during fermentation processes. Our previous studies showed that arginine induces endocytosis of the proline transporter Put4, resulting in inhibition of proline utilization. We here report a possible role of arginine sensing in the inhibition of proline utilization.

View Article and Find Full Text PDF

Proline contributes to the taste and flavor of foods. The yeast Saccharomyces cerevisiae poorly assimilates proline during fermentation processes, resulting in the accumulation of proline in fermentative products. We performed here a screening of in total 1138 yeasts to obtain strains that better utilize proline.

View Article and Find Full Text PDF

Proline is a predominant amino acid in grape must, but it is poorly utilized by the yeast Saccharomyces cerevisiae in wine-making processes. This sometimes leads to a nitrogen deficiency during fermentation and proline accumulation in wine. In this study, we clarified that a glucose response is involved in an inhibitory mechanism of proline utilization in yeast.

View Article and Find Full Text PDF

Awamori, the traditional distilled alcoholic beverage of Okinawa, Japan, is brewed with the yeast . During the distillation process after the fermentation, enormous quantities of distillation residues containing yeast cells must be disposed of, and this has recently been recognized as a major problem both environmentally and economically. Proline, a multifunctional amino acid, has the highest water retention capacity among amino acids.

View Article and Find Full Text PDF

Aims: This study aimed to establish a yeast-based screening system for potential compounds that can alleviate the toxicity of α-synuclein (α-syn), a neuropathological hallmark of Parkinson's disease, either inhibition of α-syn aggregation or promotion of ubiquitin-mediated degradation of α-syn.

Methods And Results: A powerful yeast-based screening assay using the rsp5 -mutant strain, which is hypersensitive to α-syn aggregation, was established by two-step gene replacement and further overexpressed the GFP-fused α-syn in the drug-sensitive yeast strain with a galactose-inducible multicopy plasmid. The rsp5 -mutant strain treated with baicalein, a known α-syn aggregation inhibitor, showed better α-syn toxicity alleviation than the same background wild type strain as accessed by comparison on the reduction kinetics of viable dye resazurin fluorometrically (λ 540/λ 590 nm).

View Article and Find Full Text PDF

Proline is a pivotal and multifunctional amino acid that is used not only as a nitrogen source but also as a stress protectant and energy source. Therefore, proline metabolism is known to be important in maintaining cellular homeostasis. Here, we discovered that proline oxidation, catalyzed by the proline oxidase Put1, a mitochondrial flavin-dependent enzyme converting proline into ∆-pyrroline-5-carboxylate, controls the chronological lifespan of the yeast .

View Article and Find Full Text PDF

Most of plasma membrane transporters are downregulated by ubiquitination-dependent endocytosis to avoid the excess uptake of their substrates. In Saccharomyces cerevisiae, ubiquitination of transporters is mediated by the HECT-type ubiquitin ligase Rsp5. We report here a mechanism underlying the substrate-induced endocytosis of the broad-specificity amino acid permease Agp1.

View Article and Find Full Text PDF

Ubiquitination is a key signal for endocytosis of proteins on the plasma membrane. The ubiquitin ligase Rsp5 of Saccharomyces cerevisiae, which contains an amino-terminal membrane-binding C2 domain, three substrate-recognizing tryptophan-tryptophan (WW) domains and a carboxyl-terminal catalytic homologous to the E6-AP carboxyl terminus (HECT) domain, can ubiquitinate plasma membrane proteins directing them for endocytosis. Here, we examined the roles of the C2 domain in endocytosis for the downregulation of the general amino acid permease Gap1, which is one of nitrogen-regulated permeases in S.

View Article and Find Full Text PDF

Proline is one of the abundant amino acids in grape must, but in winemaking processes it is poorly assimilated by the yeast Saccharomyces cerevisiae. This often causes a nitrogen deficiency during fermentation and proline accumulation in wine. Our previous study showed that arginine inhibits proline utilization by specifically inducing the endocytosis of the high-affinity proline transporter Put4.

View Article and Find Full Text PDF

The ubiquitin ligase Rsp5, which is the only yeast Saccharomyces cerevisiae member of the Nedd4-family, recognizes and ubiquitinates various substrate proteins through the functions of three conserved WW domains. To elucidate the role of each WW domain in endocytosis of the general amino acid permease Gap1 via interaction with the arrestin-like adaptor proteins Bul1 and Bul2 (Bul1/2), we investigated the effects of the double mutations that abrogate the recognition of PY motifs on target proteins (rsp5(W257F/P260A), rsp5(W359F/P362A), and rsp5(W415F/P418A)) and the alanine substitutions of the conserved threonine residues that are regarded as putative phosphorylation sites (rsp5(T255A), RSP5(T357A), and rsp5(T413A)), both of which are located within each WW domain. The rsp5(W257F/P260A), rsp5(W359F/P362A), and rsp5(W415F/P418A) mutations increased sensitivity to the proline analog azetidine-2-carboxylate (AZC), defective endocytosis of Gap1, and impaired interactions with Bul1.

View Article and Find Full Text PDF