Publications by authors named "Ryoto Kojima"

Aldimines and ketimines containing electron-donating and electron-withdrawing groups can be hydrosilylated with borenium catalysts at as low as 1 mol% catalyst loading at room temperature, providing the corresponding secondary amines in excellent yields. Reactions with 2-phenylquinoline gave the 1,4-hydrosilylquinoline product selectively which can be further functionalized in a one-pot synthesis to give unique γ-amino alcohol derivatives. Control experiments suggest that the borenium ion catalyzes both the hydrosilylation and subsequent addition to the aldehyde.

View Article and Find Full Text PDF

The first enantioselective synthesis of five-membered -heterocyclic allylboronates has been accomplished by a C-B bond-forming dearomatization of pyrroles using a copper(I) catalyst. This reaction involves the regio- and enantioselective addition of a borylcopper(I) species to pyrrole-2-carboxylates, followed by the diastereoselective protonation of the resulting copper(I) enolate to afford pyrrolidine-type allylboronates. The products are highly attractive reagents for the rapid construction of pyrrolidine derivatives that bear five consecutive stereocenters via subsequent allylboration/oxidation processes.

View Article and Find Full Text PDF

A stereoselective debromoborylation of aliphatic 1,1-dibromo-1-alkenes to prepare (Z)-1-bromo-1-alkenylboronate esters using copper(i) catalysts was developed. The debromoborylation of various aliphatic 1,1-dibromo-1-alkenes in the presence of a copper(i) catalyst and bis(pinacolato)diboron proceeded smoothly to produce (Z)-1-bromo-1-alkenylboronate esters in good yields with only Z geometry.

View Article and Find Full Text PDF

The first catalytic enantioselective γ-boryl substitution of CF -substituted alkenes is reported. A series of CF -substituted alkenes was treated with a diboron reagent in the presence of a copper(I)/Josiphos catalyst to afford the corresponding optically active γ,γ-gem-difluoroallylboronates in high enantioselectivity. The thus obtained products could be readily converted into the corresponding difluoromethylene-containing homoallylic alcohols using highly stereospecific allylation reactions.

View Article and Find Full Text PDF

We have developed a novel approach for the stereodivergent hydrodefluorination of gem-difluoroalkenes using copper(i) catalysts to obtain stereodefined monofluoroalkenes. Both (Z)- and (E)-terminal monofluoroalkenes were obtained by the hydrodefluorination of gem-difluoroalkenes in the presence of copper(i) catalysts and diboron or hydrosilane, respectively, with high stereoselectivity. DFT calculations were conducted to elucidate the stereoselectivity.

View Article and Find Full Text PDF