Epigenetic regulation of gene expression differs between fast- and slow-twitch skeletal muscles in adult rats, although the precise mechanisms are still unknown. The present study investigates the differences in responses of RNA polymerase II (Pol II) and histone acetylation during transcriptional activation in the plantaris and soleus muscles of adult rats after acute treadmill running. We targeted the peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) gene to analyze epigenomic changes by chromatin immunoprecipitation.
View Article and Find Full Text PDFLong-term running training causes epigenetic changes in the skeletal muscles. Here we tested the effects of the total amount or duration of running training on the distribution of histones in the rat plantaris muscle. Post-weaned young rats were assigned to 3 different training groups: Run-1, 30 min/day running exercise for 8 wk using an animal treadmill at 24 m/min; Run-2, 15 min/day for 8 wk; and Run-3, 60 min/day for 4 wk.
View Article and Find Full Text PDFResponsiveness to physiological stimuli, such as exercise and muscular inactivation, differs in individuals. However, the mechanisms responsible for these individual differences remain poorly understood. We tested whether a prior experience of exercise training affects the responses of skeletal muscles to unloading.
View Article and Find Full Text PDF