Publications by authors named "Ryota Osuga"

Fe-containing zeolites are effective catalysts in converting the greenhouse gases CH and NO into valuable chemicals. However, the activities of Fe-containing zeolites in methane conversion and NO decomposition are frequently conflated, and the activities of different Fe species are still controversial. Herein, Fe-containing aluminosilicate CHA zeolites with Fe species at different spatial distances affected by the arrangement of framework Al atoms were synthesized in a one-pot manner in the presence or absence of Na.

View Article and Find Full Text PDF

Paired Ga sites represented by the Ga-O-Si-O-Ga sequence were firstly formed intentionally in CHA-type zeolite frameworks the transcription of pre-formed paired Ga species in a Ga-rich amorphous silica-gallia under seed-assisted hydrothermal conditions. Such paired Ga sites behaved as ion-exchange sites for capturing divalent cation, Co.

View Article and Find Full Text PDF

High-silica CHA-type aluminosilicates (Si/Al molar ratio >100) were synthesized hydrothermally in the absence of fluoride media, where the seed-assisted aging treatment played an important role on the crystallization. These aluminosilicates showed a long catalytic lifetime with high selectivity toward lower olefins in the methanol-to-olefins reaction.

View Article and Find Full Text PDF

MSE-type zeolites synthesized by different organic structure-directing agents (OSDAs), UZM-35 and MCM-68, were prepared. The location of Brønsted acid sites derived from the framework Al atoms and acidic properties were investigated based on Al MQMAS NMR and IR techniques combined with the evaluation of the catalytic activity. We have successfully found a significant difference in the location of Brønsted acid sites in the MSE-type framework; 61 and 33% of acid sites were located at the 12-ring channel for MCM-68 and UZM-35, respectively.

View Article and Find Full Text PDF

The paired Al species pre-formed in Al-rich amorphous aluminosilicates were transcribed into high-silica CHA-type zeolite frameworks under hydrothermal conditions, which offers a new approach to creating paired Al sites in zeolite frameworks. This Al-pair-rich CHA exhibited a higher Sr uptake than the control CHA zeolite synthesized by the conventional procedure.

View Article and Find Full Text PDF

Mordenite (MOR)-type zeolites with a Si/Al molar ratio of up to 13 with crystallite sizes of ca. 60 nm were successfully synthesized from Al-rich aluminosilicates with a Si/Al ratio of 2 and additional SiO under seed-assisted hydrothermal conditions for 6 h or longer without any organic structure-directing agents (OSDAs). In stark contrast, under the same hydrothermal conditions for 6 h, control experiments using starting reagent(s), such as Al-poor aluminosilicate, pure SiO, tetraethyl orthosilicate, and Al(NO), all of which are typically employed for zeolite synthesis, failed to yield MOR-type zeolites.

View Article and Find Full Text PDF

The development of simple catalysts with high performance in the selective oxidation of methane to syngas at low temperature has attracted much attention. Here we report a nickel-based solid catalyst for the oxidation of methane, synthesised by a facile impregnation method. Highly dispersed ultra-small NiO particles of 1.

View Article and Find Full Text PDF

Two-dimensional hydrogen boride (HB) sheets were recently demonstrated to act as a solid acid catalyst in their hydrogen-deficient state. However, both the active sites and the mechanism of the catalytic process require further elucidation. In this study, we analyzed the conversion of ethanol adsorbed on HB sheets under vacuum during heating using in situ Fourier transform infrared (FT-IR) absorption spectroscopy with isotope labelling.

View Article and Find Full Text PDF

Encapsulating metal nanoclusters into zeolites combines the superior catalytic activity of the nanoclusters with high stability and unique shape selectivity of the crystalline microporous materials. The preparation of such bifunctional catalysts, however, is often restricted by the mismatching in time scale between the fast formation of nanoclusters and the slow crystallization of zeolites. We herein demonstrate a novel strategy to overcome the mismatching issue, in which the crystallization of zeolites is expedited so as to synchronize it with the rapid formation of nanoclusters.

View Article and Find Full Text PDF

Rh ion-exchanged MFI-type aluminosilicate zeolites with different Al distributions were prepared for controlling the location, state, and size of Rh species. The MFI-type aluminosilicate zeolite with the framework Al atoms predominantly located inside the channel intersections leads to the formation of relatively large Rh species, which were confirmed by ultraviolet-visible (UV-vis) and infrared (IR) spectroscopies. Moreover, this catalyst showed a high catalytic activity for the oxidative reforming reaction of methane.

View Article and Find Full Text PDF

Improving the stability of porous materials for practical applications is highly challenging. Aluminosilicate zeolites are utilized for adsorptive and catalytic applications, wherein they are sometimes exposed to high-temperature steaming conditions (∼1000 °C). As the degradation of high-silica zeolites originates from the defect sites in their frameworks, feasible defect-healing methods are highly demanded.

View Article and Find Full Text PDF

Proton conduction in crystalline porous materials has received much attention from basic scientific research through to practical applications. Polyoxometalates (POMs) can efficiently transport protons because of their small superficial negative charge density. A simple method for enhancing proton conductivity is to introduce NH into the crystal structure, because NH can form hydrogen bonds and function as a proton carrier.

View Article and Find Full Text PDF

Proton conduction in alkali metal ion-exchanged porous ionic crystals A[CrO(OOCH)(etpy)][α-SiWO]·nHO [I-A] (A = Li, Na, K, Cs, etpy = 4-ethylpyridine) is investigated. Single crystal and powder X-ray diffraction measurements show that I-A possesses analogous one-dimensional channels where alkali metal ions (A) and water of crystallization exist. Impedance spectroscopy and water diffusion measurements of I-A show that proton conductivities are low (10-10 S cm) under low relative humidity (RH), and protons mostly migrate as HO with HO as vehicles (vehicle mechanism).

View Article and Find Full Text PDF

The synthesis of ladder polymers is still a big challenge in polymer chemistry, and in particular, there are few examples of conformationally flexible well-defined ladder polymers. Here we report an efficient and convenient route to conformationally flexible ladder polymers, which is based on a postpolymerization reaction of a rigid ladder polymer containing Tröger's base in its main chain. The postpolymerization reaction involves sequential -methylation and hydrolysis for the Tröger's base unit, resulting in a diazacyclooctane skeleton that can exhibit a ring-flipping motion.

View Article and Find Full Text PDF

A porous ionic crystal is synthesized with a cationic Al(iii)-salphen complex (Al(iii)-salphen) and a α-Keggin-type polyoxometalate (POM). The compound possesses stable three dimensional porous structure and shows high activity as a heterogeneous catalyst in pinacol rearrangement, which is a typical acid reaction. Notably, Al(iii)-salphen, POM, and a physical mixture of the two components are much less active, suggesting a synergetic effect of Al(iii)-salphen and POM in a porous framework.

View Article and Find Full Text PDF

The reaction mechanism of the decomposition of ethoxy species to ethene and acidic OH groups on H-ZSM-5 was studied by IR spectroscopy using isotope-labeled ethanol. The concerted mechanism occurring on both the ethoxy (acid) site and the counterpart lattice oxygen was suggested by GC-MS analysis of evolved d2-ethene and IR observation of the recovery of OH s groups on acid sites from the decomposition of CH3CD2O- ethoxy species. The concerted mechanism was further confirmed by the estimation of activation energy for decomposition of CH3CH2O-, CH3CD2O-, and CD3CD2O- ethoxy species, 122 ± 3, 125 ± 3, and 140 ± 5 kJ mol(-1), respectively, where the kinetic isotope effect was observed for the cleavage of the CH or CD bond of the methyl group of the ethoxy species.

View Article and Find Full Text PDF