Publications by authors named "Ryota Ono"

The attraction between π-conjugated planar electron donor and acceptor molecules that form many stable charge-transfer (CT) complexes has been explained by quantum chemical CT interactions, although the fundamental origin remains unclear. Here, we demonstrate the mechanism of CT complex formation by potential energy map analysis for TTF-CA and BTBT-TCNQ, using energy decomposition of intermolecular interaction by symmetry-adapted perturbation theory (SAPT) combined with coupled cluster calculation. We find that the source of attraction between donor and acceptor molecules is ascribed primarily to the dispersion force and also to the electrostatic force.

View Article and Find Full Text PDF

Upon white light illumination, the growth of the budding yeast Saccharomyces cerevisiae was extremely impaired only in the presence of iodide ions, but not fluoride, chloride and bromide ions. Action spectroscopy revealed that the maximum wavelength of the light is around at 373 nm, corresponding to the UVA region. Using a genetic approach, several genes, including OPY1, HEM1, and PAU11, were identified as suppressors of this growth inhibition.

View Article and Find Full Text PDF

According to previous theoretical work, the binary oxide CuO can become a room-temperature multiferroic via tuning of the superexchange interactions by application of pressure. Thus far, however, there has been no experimental evidence for the predicted room-temperature multiferroicity. Here, we show by neutron diffraction that the multiferroic phase in CuO reaches 295 K with the application of 18.

View Article and Find Full Text PDF

We reveal the microscopic origin of electric polarization P[over →] induced by noncollinear magnetic order. We show that in Mott insulators, such P[over →] is given by all possible combinations of position operators r[over →][over ^]_{ij}=(r[over →]_{ij}^{0},r[over →]_{ij}) and transfer integrals t[over ^]_{ij}=(t_{ij}^{0},t_{ij}) in the bonds, where r[over →]_{ij}^{0} and t_{ij}^{0} are spin-independent contributions in the basis of Kramers doublet states, while r[over →]_{ij} and t_{ij} stem solely from the spin-orbit interaction. Among them, the combination t_{ij}^{0}r[over →]_{ij}, which couples to the spin current, remains finite in the centrosymmetric bonds, thus yielding finite P[over →] in the case of noncollinear arrangement of spins.

View Article and Find Full Text PDF