Publications by authors named "Ryota Komori"

Objective: Epilepsy is common among patients with severe motor and intellectual disability (SMID) patients, often taking a prolonged and intractable course. Lacosamide (LCM) is widely used to treat epilepsy in both adults and children. We assess the efficacy and tolerability of LCM among pediatric and young adult epilepsy patients with SMID who suffer from intractable seizures.

View Article and Find Full Text PDF

Secretory pathway proteins are cotranslationally translocated into the endoplasmic reticulum (ER) of metazoan cells through the protein channel, translocon. Given that there are far fewer translocons than ribosomes in a cell, it is essential that secretory protein-translating ribosomes only occupy translocons transiently. Therefore, if translocons are obstructed by ribosomes stalled or slowed in translational elongation, it possibly results in deleterious consequences to cellular function.

View Article and Find Full Text PDF

The Golgi apparatus is an organelle where membrane or secretory proteins receive post-translational modifications such as glycosylation and sulfation, after which the proteins are selectively transported to their final destinations through vesicular transport. When the synthesis of secretory or membrane proteins is increased and overwhelms the capacity of the Golgi (Golgi stress), eukaryotic cells activate a homeostatic mechanism called the Golgi stress response to augment the capacity of the Golgi. Four response pathways of the Golgi stress response have been identified, namely the TFE3, CREB3, HSP47, and proteoglycan pathways, which regulate the general function of the Golgi, apoptosis, cell survival, and proteoglycan glycosylation, respectively.

View Article and Find Full Text PDF

The Golgi stress response is a homeostatic mechanism that augments the functional capacity of the Golgi apparatus when Golgi function becomes insufficient (Golgi stress). Three response pathways of the Golgi stress response have been identified in mammalian cells, the TFE3, HSP47 and CREB3 pathways, which augment the capacity of specific Golgi functions such as N-glycosylation, anti-apoptotic activity and pro-apoptotic activity, respectively. On the contrary, glycosylation of proteoglycans (PGs) is another important function of the Golgi, although the response pathway upregulating expression of glycosylation enzymes for PGs in response to Golgi stress remains unknown.

View Article and Find Full Text PDF

The endoplasmic reticulum (ER) stress response is a cytoprotective mechanism against the accumulation of unfolded proteins in the ER (ER stress) that consists of three response pathways (the ATF6, IRE1 and PERK pathways) in mammals. These pathways regulate the transcription of ER-related genes through specific cis-acting elements, ERSE, UPRE and AARE, respectively. Because the mammalian ER stress response is markedly activated in professional secretory cells, its main function was thought to be to upregulate the capacity of protein folding in the ER in accordance with the increased synthesis of secretory proteins.

View Article and Find Full Text PDF

Tyrosine sulfation is a posttranslational modification common in peptides and proteins synthesized by the secretory pathway in most eukaryotes. In plants, this modification is critical for the biological activities of a subset of peptide hormones such as PSK and PSY1. In animals, tyrosine sulfation is catalyzed by Golgi-localized type II transmembrane proteins called tyrosylprotein sulfotransferases (TPSTs).

View Article and Find Full Text PDF