Publications by authors named "Ryota Aono"

Extracellular ligands control biological phenomena. Cells distinguish physiological stimuli from weak noise stimuli by establishing a ligand-concentration threshold. Hormonal control of the meiotic G2/M transition in oocytes is essential for reproduction.

View Article and Find Full Text PDF

We have evaluated the photodynamic activities of C60 derivative·γ-cyclodextrin (γ-CDx) complexes and demonstrated that they were significantly higher than those of the pristine C60 and C70·γ-CDx complexes under photoirradiation at long wavelengths (610-720 nm), which represent the optimal wavelengths for photodynamic therapy (PDT). In particular, the cationic C60 derivative·γ-CDx complex had the highest photodynamic ability because the complex possessed the ability to generate high levels of (1)O2 and provided a higher level of intracellular uptake. The photodynamic activity of this complex was greater than that of photofrin, which is the most widely used of the known clinical photosensitizers.

View Article and Find Full Text PDF

The three different regioisomers of bis-N-methylfulleropyrrolidines have been separated by controlling the relative amounts of γ-cyclodextrin and dimethyl sulfoxide (DMSO) contained in solutions of these compounds. When a small amount of γ-CDx was used in a mechanochemical high-speed vibration milling apparatus, the trans-1 and trans-2•γ-CDx complexes were separated from the trans-3•γ-CDx complex. In contrast, trans-3 was extracted in a relatively high ratio with an excess of γ-CDx.

View Article and Find Full Text PDF

X-Ray crystallography revealed that the C(60) derivative·γ-cyclodextrin (γ-CDx) complex has a pseudorotaxane structure and the structure of the crystal clarified the importance of multi-point hydrogen bonds between two γ-CDxs for stabilising the 3·γ-CDx complex.

View Article and Find Full Text PDF