Publications by authors named "Ryosuke Yamagishi"

In predicting the pathogenicity of a nonsynonymous single-nucleotide variant (nsSNV), a radical change in amino acid properties is prone to be classified as being pathogenic. However, not all such nsSNVs are associated with human diseases. We generated random forest (RF) models individually for each amino acid substitution to differentiate pathogenic nsSNVs in the Human Gene Mutation Database and common nsSNVs in dbSNP.

View Article and Find Full Text PDF
Article Synopsis
  • Oct4 is essential for maintaining pluripotency in cells and plays important roles in differentiation, uniquely functioning without substitutes from its protein family.
  • The nuclear transport of Oct4, which involves importin α, is crucial for its role in reprogramming but lacks detailed understanding at a molecular level.
  • A new model has been developed to explain Oct4's interaction with importin α and DNA, highlighting structural differences that may influence its ability to switch between binding to importin α and DNA efficiently.
View Article and Find Full Text PDF

Hypothesis: Different missense mutations of the optic atrophy 1 gene (OPA1) identified in optic atrophy patients with auditory neuropathy spectrum disorder (ANSD) induce functional impairment through different molecular mechanisms.

Background: OPA1 is the gene responsible for autosomal dominant optic atrophy (ADOA), but some of its mutations are also associated with ANSD. OPA1 is a member of the GTPase family of proteins and plays a key role in the maintenance of mitochondrial activities that are dependent on dimer formation of the protein.

View Article and Find Full Text PDF

This article describes data related to a research article titled "Comprehensive analysis of the dynamic structure of nuclear localization signals" by Yamagishi et al. [1]. In this article, we provide the data covering wider range of the mammalian NLSs in UniProt (Universal Protein Resource) [2] regardless of their conformations.

View Article and Find Full Text PDF

Most transcription and epigenetic factors in eukaryotic cells have nuclear localization signals (NLSs) and are transported to the nucleus by nuclear transport proteins. Understanding the features of NLSs and the mechanisms of nuclear transport might help understand gene expression regulation, somatic cell reprogramming, thus leading to the treatment of diseases associated with abnormal gene expression. Although many studies analyzed the amino acid sequence of NLSs, few studies investigated their three-dimensional structure.

View Article and Find Full Text PDF

We recently demonstrated that the expression of the importin α subtype is switched from α2 to α1 during neural differentiation in mouse embryonic stem cells (ESCs) and that this switching has a major impact on cell differentiation. In this study, we report a cell-fate determination mechanism in which importin α2 negatively regulates the nuclear import of certain transcription factors to maintain ESC properties. The nuclear import of Oct6 and Brn2 was inhibited via the formation of a transport-incompetent complex of the cargo bound to a nuclear localization signal binding site in importin α2.

View Article and Find Full Text PDF

Dimerization between G protein-coupled receptors (GPCRs) is a clearly established phenomenon. However, limited information is currently available on the interface essential for this process. Based on structural comparisons and sequence homology between rhodopsin and A(1) adenosine receptor (A(1)R), we initially hypothesized that four residues in transmembrane (TM) 4 and TM5 are involved in A(1)R homodimerization.

View Article and Find Full Text PDF

L-Lactate oxidase (LOX) belongs to a family of flavin mononucleotide (FMN)-dependent alpha-hydroxy acid-oxidizing enzymes. Previously, the crystal structure of LOX (pH 8.0) from Aerococcus viridans was solved, revealing that the active site residues are located around the FMN.

View Article and Find Full Text PDF