Chem Commun (Camb)
November 2020
Strigolactones (SLs) are plant hormones that suppress shoot branching through perception by their receptor protein DWARF 14 (D14). The artificial regulation of SL signaling has been considered a potent agricultural technique because plant architecture is strongly related to crop yield. In this communication, we describe the development of a small-molecule D14 inhibitor that functions at sub-micromolar levels.
View Article and Find Full Text PDFAromatic rearrangement reactions are useful tools in the organic chemist's toolbox when generating uncommon substitution patterns. However, it is difficult to precisely translocate a functional group in (hetero) arene systems, with the exception of halogen atoms in a halogen dance reaction. Here, we describe an unprecedented "ester dance" reaction: a predictable translocation of an ester group from one carbon atom to another on an aromatic ring.
View Article and Find Full Text PDFA decarbonylative C-H coupling of azoles and aromatic esters by palladium catalysis is described. Our previously reported Ni-catalyzed C-H coupling of azoles and aromatic esters has a significant drawback regarding the substrate scope. Herein, we employ palladium catalysis instead of nickel, resulting in a broader substrate scope in terms of azoles and aromatic esters.
View Article and Find Full Text PDFA new tool for probing enantioselective reaction mechanisms is introduced. Monitoring the temporal change in product enantiomeric excess after addition of the opposite enantiomer of the ligand during the reaction provides a means of probing dynamic ligand exchange in enantioselective C-H iodination catalyzed by Pd with monoprotected amino acid ligands (MPAAs). This work has general potential to provide insights about the dynamics of catalyst and ligand molecularity and exchange.
View Article and Find Full Text PDFCatalytic cross-coupling reactions of aromatic esters and amides have recently gained considerable attention from synthetic chemists as de novo and efficient synthetic methods to form C-C and C-heteroatom bonds. Esters and amides can be used as diversifiable groups in metal-catalyzed cross-coupling: in a decarbonylative manner, they can be utilized as leaving groups, whereas in a non-decarbonylative manner, they can form ketone derivatives. In this review, recent advances of this research topic are discussed.
View Article and Find Full Text PDFBecause diaryl ethers are present as an important motif in pharmaceuticals and natural products, extensive studies for the development of novel methods have been conducted. A conventional method for the construction of the diaryl ether moiety is the intermolecular cross-coupling reaction of aryl halides and phenols with a copper or palladium catalyst. We developed a catalytic decarbonylative etherification of aromatic esters using a palladium or nickel catalyst with our enabling diphosphine ligand to give the corresponding diaryl ethers.
View Article and Find Full Text PDFGeneration of useful arylnitrile structures from simple aromatic feedstock chemicals represents a fundamentally important reaction in chemical synthesis. The first nickel-catalyzed cyanation of phenol derivatives with metal-free cyanating agents, aminoacetonitriles, is described. A nickel-based catalytic system consisting of a unique diphosphine ligand such as dcype or dcypt enables the cyanation of versatile phenol derivatives such as aryl carbamates and aryl pivalates.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2016
A quinoline-based ligand effectively promotes the palladium-catalyzed borylation of C(sp(3))-H bonds. Primary β-C(sp(3))-H bonds in carboxylic acid derivatives as well as secondary C(sp(3))-H bonds in a variety of carbocyclic rings, including cyclopropanes, cyclobutanes, cyclopentanes, cyclohexanes, and cycloheptanes, can thus be borylated. This directed borylation method complements existing iridium(I)- and rhodium(I)-catalyzed C-H borylation reactions in terms of scope and operational conditions.
View Article and Find Full Text PDFPd(II)-catalyzed cross-coupling of C(sp(3))-H bonds with organosilicon coupling partners has been achieved for the first time. The use of a newly developed quinoline-based ligand is essential for the cross-coupling reactions to proceed.
View Article and Find Full Text PDFChem Commun (Camb)
January 2015
A nickel-catalyzed α-arylation of esters and amides with phenol derivatives has been accomplished. In the presence of our unique nickel catalyst, prepared in situ from Ni(cod)2, 3,4-bis(dicyclohexylphosphino)thiophene (dcypt), and K3PO4, various esters and amides undergo α-arylation with O-arylpivalates or O-arylcarbamates to afford the corresponding coupling products. The thus obtained α-aryl esters and amides are useful precursors of privileged motifs such as α-arylcarboxylic acids and β-arylamines.
View Article and Find Full Text PDFThe nickel-catalyzed α-arylation of ketones with readily available phenol derivatives (esters and carbamates) provides access to useful α-arylketones. For this transformation, 3,4-bis(dicyclohexylphosphino)thiophene (dcypt) was identified as a new, enabling, air-stable ligand for this transformation. The intermediate of an assumed C-O oxidative addition was isolated and characterized by X-ray crystal-structure analysis.
View Article and Find Full Text PDF