Publications by authors named "Ryosuke Sano"

Article Synopsis
  • Xylem vessels are essential for water transport in land plants, and the VND7 transcription factor plays a key role in the differentiation of xylem vessel cells in Arabidopsis.
  • Researchers identified specific mutants (seiv) that affect the differentiation process, linked to four genes related to protein ubiquitination.
  • The study reveals that ubiquitination impacts VND7's activity and xylem function, with specific lysine residues on VND7 being vital for its regulatory role.
View Article and Find Full Text PDF
Article Synopsis
  • Variations in seed size and number in plants are linked to different reproductive strategies and are influenced by environmental factors related to maternal resources.
  • The wild rice Oryza rufipogon utilizes a mechanism involving the gene FT-like 9 (FTL9) to sense maternal resources, which helps coordinate grain size and number.
  • When resources are plentiful, FTL9 promotes a higher number of smaller seeds, aiding survival in variable environments; however, a common loss-of-function allele for FTL9 is found in both wild and cultivated rice, reshaping the understanding of rice domestication.
View Article and Find Full Text PDF

Plant cell walls are typically composed of polysaccharide polymers and cell wall proteins (CWPs). CWPs account for approximately 10% of the plant cell wall structure and perform a wide range of functions. Previous studies have identified approximately 1000 CWPs in the model plant Arabidopsis thaliana; however, the analyses mainly targeted primary cell walls, which are generated at cell division.

View Article and Find Full Text PDF

KNOX and BELL transcription factors regulate distinct steps of diploid development in plants. In the green alga KNOX and BELL proteins are inherited by gametes of the opposite mating types and heterodimerize in zygotes to activate diploid development. By contrast, in land plants such as and , KNOX and BELL proteins function in meristem maintenance and organogenesis during the later stages of diploid development.

View Article and Find Full Text PDF

The homologs of VASCULAR RELATED NAC-DOMAIN in the peat moss Sphagnum palustre were identified and these transcriptional activity as the VNS family was conserved. In angiosperms, xylem vessel element differentiation is governed by the master regulators VASCULAR RELATED NAC-DOMAIN6 (VND6) and VND7, encoding plant-specific NAC transcription factors. Although vessel elements have not been found in bryophytes, differentiation of the water-conducting hydroid cells in the moss Physcomitrella patens is regulated by VND homologs termed VND-NST-SOMBRERO (VNS) genes.

View Article and Find Full Text PDF

Parasitic plants that infect crops are devastating to agriculture throughout the world. These parasites develop a unique inducible organ called the haustorium that connects the vascular systems of the parasite and host to establish a flow of water and nutrients. Upon contact with the host, the haustorial epidermal cells at the interface with the host differentiate into specific cells called intrusive cells that grow endophytically toward the host vasculature.

View Article and Find Full Text PDF

Growth of biomass for lignocellulosic biofuels and biomaterials may take place on land unsuitable for foods, meaning the biomass plants are exposed to increased abiotic stresses. Thus, the understanding how this affects biomass composition and quality is important for downstream bioprocessing. Here, we analyzed the effect of drought and salt stress on cell wall biosynthesis in young shoots and xylem tissues of using transcriptomic and biochemical methods.

View Article and Find Full Text PDF

Plant-specific Dof transcription factors VDOF1 and VDOF2 are novel regulators of vascular cell differentiation through the course of a lifetime in Arabidopsis, with shifting their transcriptional target genes. Vascular system is one of critical tissues for vascular plants to transport low-molecular compounds, such as water, minerals, and the photosynthetic product, sucrose. Here, we report the involvement of two Dof transcription factors, named VASCULAR-RELATED DOF1 (VDOF1)/VDOF4.

View Article and Find Full Text PDF

The genus is stem parasitic angiosperms that parasitize a wide range of vascular plants via de novo formation of a distinctive parasitic organ called a haustorium. In the developing haustorium, meristematic cells, which are initiated from the stem cortical tissue, differentiate into haustorial parenchyma cells, which elongate, penetrate into the host tissues, and finally connect with the host vasculature. This interspecific vasculature connection allows the parasite to uptake water and nutrients from the host plant.

View Article and Find Full Text PDF

Vascular plants have two types of water-conducting cells, xylem vessel cells (in angiosperms) and tracheid cells (in ferns and gymnosperms). These cells are commonly characterized by secondary cell wall (SCW) formation and programmed cell death (PCD), which increase the efficiency of water conduction. The differentiation of xylem vessel cells is regulated by a set of NAC (NAM, ATAF1/2 and CUC2) transcription factors, called the VASCULAR-RELATED NAC-DOMAIN (VND) family, in Arabidopsis thaliana Linne.

View Article and Find Full Text PDF

Plants generally possess a strong ability to regenerate organs; for example, in tissue culture, shoots can regenerate from callus, a clump of actively proliferating, undifferentiated cells. Processing of pre-mRNA and ribosomal RNAs is important for callus formation and shoot regeneration. However, our knowledge of the roles of RNA quality control via the nonsense-mediated mRNA decay (NMD) pathway in shoot regeneration is limited.

View Article and Find Full Text PDF

Root hairs protruding from epidermal cells increase the surface area for water absorption and nutrient uptake. Various environmental factors including light, oxygen concentration, carbon dioxide concentration, calcium and mycorrhizal associations promote root hair formation in Arabidopsis thaliana. Light regulates the expression of a large number of genes at the transcriptional and post-transcriptional levels; however, there is little information linking the light response to root hair development.

View Article and Find Full Text PDF

Gene homology helps us understand gene function and speciation. The number of plant genes and species registered in public databanks is continuously increasing. It is useful to associate homologous genes of various plants to better understand plant speciation.

View Article and Find Full Text PDF

Next-generation sequencing technologies have made it possible to carry out transcriptome analysis at the single-cell level. Single-cell RNA-sequencing (scRNA-seq) data provide insights into cellular dynamics, including intercellular heterogeneity as well as inter- and intra-cellular fluctuations in gene expression that cannot be studied using populations of cells. The utilization of scRNA-seq is, however, restricted to cell types that can be isolated from their original tissues, and it can be difficult to obtain precise positional information for these cells in situ.

View Article and Find Full Text PDF

The xylem vessel is an essential structure for water conduction in vascular plants. Xylem vessel cells deposit thick secondary cell walls and undergo programmed cell death, to function as water-conducting elements. Since the discovery of the plant-specific NAC domain-type VASCULAR-RELATED NAC-DOMAIN (VND) transcription factors, which function as master switches of xylem vessel cell differentiation in Arabidopsis, much has been learned about the transcriptional regulatory network of xylem vessel cell differentiation.

View Article and Find Full Text PDF

Arabidopsis () () to encode a group of NAC domain transcription factors that function as master regulators of xylem vessel element differentiation. These transcription factors activate the transcription of genes required for secondary cell wall formation and programmed cell death, key events in xylem vessel element differentiation. Because constitutive overexpression of VND6 and VND7 induces ectopic xylem vessel element differentiation, functional studies of VND proteins have largely focused on these two proteins.

View Article and Find Full Text PDF

The evolution of land flora transformed the terrestrial environment. Land plants evolved from an ancestral charophycean alga from which they inherited developmental, biochemical, and cell biological attributes. Additional biochemical and physiological adaptations to land, and a life cycle with an alternation between multicellular haploid and diploid generations that facilitated efficient dispersal of desiccation tolerant spores, evolved in the ancestral land plant.

View Article and Find Full Text PDF

Developmental plasticity is one of the most striking features of plant morphogenesis, as plants are able to vary their shapes in response to environmental cues. Biotic or abiotic stimuli often promote organogenesis events in plants not observed under normal growth conditions. Root-knot nematodes (RKNs) are known to parasitize multiple species of rooting plants and to induce characteristic tissue expansion called galls or root-knots on the roots of their hosts by perturbing the plant cellular machinery.

View Article and Find Full Text PDF

Over-reduction of the photosynthetic electron transport (PET) chain should be avoided, because the accumulation of reducing electron carriers produces reactive oxygen species (ROS) within photosystem I (PSI) in thylakoid membranes and causes oxidative damage to chloroplasts. To prevent production of ROS in thylakoid membranes the H gradient (ΔpH) needs to be built up across the thylakoid membranes to suppress the over-reduction state of the PET chain. In this study, we aimed to identify the critical component that stimulates ΔpH formation under illumination in higher plants.

View Article and Find Full Text PDF

The arrangement of root hair and non-hair cells in the root epidermis provides a useful model for understanding the cell fate determination system in plants. A network of related transcription factors, including GLABRA3 (GL3), influences the patterning of cell types in . is expressed primarily in root hair cells and encodes a bHLH transcription factor, which inhibits root hair differentiation in root epidermis.

View Article and Find Full Text PDF

One crucial problem that plants faced during their evolution, particularly during the transition to growth on land, was how to transport water, nutrients, metabolites, and small signaling molecules within a large, multicellular body. As a solution to this problem, land plants developed specific tissues for conducting molecules, called water-conducting cells (WCCs) and food-conducting cells (FCCs). The well-developed WCCs and FCCs in extant plants are the tracheary elements and sieve elements, respectively, which are found in vascular plants.

View Article and Find Full Text PDF

Xylem vessels, the water-conducting cells in vascular plants, undergo characteristic secondary wall deposition and programmed cell death. These processes are regulated by the VASCULAR-RELATED NAC-DOMAIN (VND) transcription factors. Here, to identify changes in metabolism that occur during protoxylem vessel element differentiation, we subjected tobacco (Nicotiana tabacum) BY-2 suspension culture cells carrying an inducible VND7 system to liquid chromatography-mass spectrometry-based wide-target metabolome analysis and transcriptome analysis.

View Article and Find Full Text PDF

The ambient dose rate in air and radioactivity concentration in soil samples collected on Izu-Oshima Island were observed in 2012, 2013 and 2014, i.e. 1, 2 and 3 years after the severe accident at the Fukushima Daiichi Nuclear Power Plant.

View Article and Find Full Text PDF

The development of cells specialized for water conduction or support is a striking innovation of plants that has enabled them to colonize land. The NAC transcription factors regulate the differentiation of these cells in vascular plants. However, the path by which plants with these cells have evolved from their nonvascular ancestors is unclear.

View Article and Find Full Text PDF