Publications by authors named "Ryosuke Kurihara"

In this study, we performed high-magnetic-field magnetization, dielectric, and ultrasound measurements on an organic salt showing a ferroelectric spin-Peierls (FSP) state, which is in close proximity to a quantum critical point. In contrast to the sparsely distributed gaslike spin solitons typically observed in conventional spin-Peierls (SP) states, the FSP state exhibits dense liquidlike spin solitons resulting from strong quantum fluctuations, even at low fields. Nevertheless, akin to conventional SP systems, a magnetic-field-induced transition is observed in the FSP state.

View Article and Find Full Text PDF

Centrosymmetric compounds with local inversion symmetry breaking have tremendously interesting and intriguing physical properties. In this study, we focus on a BiCh-based (Ch: S, Se) layered superconductor, as a system with local inversion asymmetry, because spin polarisation based on the Rashba-Dresselhaus-type spin-orbit coupling has been observed in centrosymmetric BiCh-based LaOBiS systems, while the BiCh layer lacks local inversion symmetry. Herein, we report the existence of extremely high in-plane upper critical fields in the BiCh-based system LaOFBiSSe (x = 0.

View Article and Find Full Text PDF

While anomalous Hall effect (AHE) has been extensively studied in the past, efforts for realizing large Hall response have been mainly limited within intrinsic mechanism. Lately, however, a theory of extrinsic mechanism has predicted that magnetic scattering by spin cluster can induce large AHE even above magnetic ordering temperature, particularly in magnetic semiconductors with low carrier density, strong exchange coupling, and finite spin chirality. Here, we find out a new magnetic semiconductor EuAs, where Eu ions with large magnetic moments form distorted triangular lattice.

View Article and Find Full Text PDF

Medical linear-accelerator-based stereotactic radiosurgery (SRS) using a stereotactic apparatus or image-guided radiotherapy system for intracranial lesions is performed widely in clinical practice. In general, Winston-Lutz (WL) tests using films or electric portal imaging devices (EPIDs) have been performed as pre-treatment and routine quality assurance (QA) for the abovementioned treatment. Two-dimensional displacements between the radiation isocentre and mechanical isocentre are analysed from the test; therefore, it is difficult to identify the three-dimensional (3D) isocentre position intuitively.

View Article and Find Full Text PDF

The electrical Hall effect can be significantly enhanced through the interplay of the conduction electrons with magnetism, which is known as the anomalous Hall effect (AHE). Whereas the mechanism related to band topology has been intensively studied towards energy efficient electronics, those related to electron scattering have received limited attention. Here we report the observation of giant AHE of electron-scattering origin in a chiral magnet MnGe thin film.

View Article and Find Full Text PDF

Magnetic semiconductors are a vital component in the understanding of quantum transport phenomena. To explore such delicate, yet fundamentally important, effects, it is crucial to maintain a high carrier mobility in the presence of magnetic moments. In practice, however, magnetization often diminishes the carrier mobility.

View Article and Find Full Text PDF

Unconventional surface states protected by non-trivial bulk orders are sources of various exotic quantum transport in topological materials. One prominent example is the unique magnetic orbit, so-called Weyl orbit, in topological semimetals where two spatially separated surface Fermi-arcs are interconnected across the bulk. The recent observation of quantum Hall states in Dirac semimetal CdAs bulks have drawn attention to the novel quantization phenomena possibly evolving from the Weyl orbit.

View Article and Find Full Text PDF

RNA interference (RNAi) is a valuable tool for the validation of gene identification and functional genomics. Previously, it was reported that 6th generation dendritic poly(L-lysine) (KG6) transfected DNA into several cultivated cell lines with high efficiency and without any cytotoxic effects. In this study, the potential of KG6 to be an efficient siRNA carrier is investigated.

View Article and Find Full Text PDF