Publications by authors named "Ryosuke Harakawa"

Background: Monitoring jar fermenter-cultured microorganisms in real time is important for controlling productivity of bioproducts in large-scale cultivation settings. Morphological data is used to understand the growth and fermentation states of these microorganisms during monitoring. Oleaginous yeasts are used for their high productivity of single-cell oils but the relationship between lipid productivity and morphology has not been elucidated in these organisms.

View Article and Find Full Text PDF

This article presents a method for trend clustering from tweets about coronavirus disease (COVID-19) to help us objectively review the past and make decisions about future countermeasures. We aim to avoid detecting usual trends based on seasonal events while detecting essential trends caused by the influence of COVID-19. To this aim, we regard daily changes in the frequencies of each word in tweets as time series signals and define time series signals with single peaks as target trends.

View Article and Find Full Text PDF

This article presents a method that detects tweet communities with similar topics and ranks the communities by . By identifying the tweet communities that have high importance measures, it is possible for users to easily find important information about the coronavirus disease (COVID-19). Specifically, we first construct a community network, whose nodes are tweet communities obtained by applying a community detection method to a tweet network.

View Article and Find Full Text PDF

This paper proposes a method for classifying the river state (a flood risk exists or not) from river surveillance camera images by combining patch-based processing and a convolutional neural network (CNN). Although CNN needs much training data, the number of river surveillance camera images is limited because flood does not frequently occur. Also, river surveillance camera images include objects that are irrelevant to the flood risk.

View Article and Find Full Text PDF

Most devices measuring the kinematics of masticatory function are cumbersome to setup and not portable. Data collection would be facilitated, particularly in the elderly, if the device used for the objective measurement of mastication was easily transportable and simple to setup. Accelerometers and gyroscope sensors are lightweight and portable and may be useful alternatives.

View Article and Find Full Text PDF

This paper presents a method for automatic detection of fish sounds in an underwater environment. There exist two difficulties: (i) features and classifiers that provide good detection results differ depending on the underwater environment and (ii) there are cases where a large amount of training data that is necessary for supervised machine learning cannot be prepared. A method presented in this paper (the proposed hybrid method) overcomes these difficulties as follows.

View Article and Find Full Text PDF