In the present study, we designed hydrogels for dual drug release: the hydrogels that covalently contained the polymeric micelles that possess different drug release properties. The hydrogels that were formed from polymeric micelles possessing a tightly packed (i.e.
View Article and Find Full Text PDFIn the present paper, we clarify the effects that the composition of three types of sheets-the PCL sheet, the PCL-BC (PCL-block copolymer composite) sheet, and the PCL-PM (PCL-polymeric micelle composite) sheet-can have on (1) the sheets' inner structure, (2) the dispersity of hydrophilic compounds in the sheets, (3) the sheets' mechanical properties, and (4) the sheets' degradability. Our results show that (1) the PCL-PM sheet can disperse hydrophilic compounds uniformly, (2) the molecular state (free or micellar) of a co-existing compound (PEG-b-PCL block copolymers) affects the strength and the inner structures of the sheets, whereas the presence of a co-existing compound affects the flexibility of the sheets, and (3) according to our degradation experiment, hard-to-handle PCL having extremely low hydrolysis could serve as materials with a controllable surface morphology by the effective use of co-existing compounds. The results obtained in this paper show that the PCL-CM sheet, with its uniformly dispersed polymeric micelles providing hydrophilic spaces, could be an effective biomaterial platform for incorporating hydrophilic polymers.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
March 2015
Sheets have several advantages over conventional gel- or particle-type drug carriers. Sheets have several notable attributes: sheets' size and shape are easily adjustable, sheets are highly accessible in surgery, and sheets have a large contact area relative to drug-targeting sites. However, it is difficult to incorporate hydrophilic proteins into hydrophobic sheets and to release the proteins over the long term in a sustained manner.
View Article and Find Full Text PDF