Sonodynamic therapy (SDT) is a novel promising noninvasive therapy involving utilization of low-intensity ultrasound and sonosensitizer, which can generate reactive oxygen species (ROS) by sonication. In SDT, a high therapeutic effect is achieved by intracellular delivery and accumulation at the target sites of sonosensitizer followed by oxidative damage of produced ROS by sonication. Here, pH- and redox-responsive hollow nanocapsules are prepared through the introduction of disulfide cross-linkages to self-assembled polymer vesicles formed from polyamidoamine dendron-poly(l-lysine) for the efficient delivery of sonosensitizer.
View Article and Find Full Text PDFTransdermal drug delivery systems are a key technology for skin-related diseases and for cosmetics development. The delivery of active ingredients to an appropriate site or target cells can greatly improve the efficacy of medical and cosmetic agents. For this study, liposome-based transdermal delivery systems were developed using pH-responsive phytosterol derivatives as liposome components.
View Article and Find Full Text PDFJ Biomater Sci Polym Ed
February 2018
The properties of stimuli-responsive polymers change significantly with changes to their environment, such as temperature and pH. This behavior can be utilized for the preparation of stimuli-responsive carriers for efficient cytosolic delivery of active drugs. Among the possible environmental conditions, pH is one of the most useful stimuli because the pH in an endosome is lower than under physiological conditions, depending on endosomal development.
View Article and Find Full Text PDFFor the delivery of doxorubicin (DOX), pH and redox dual responsive hollow nanocapsules were prepared through the stabilization of polymer vesicles, which spontaneously formed from polyamidoamine dendron-poly(l-lysine) (PAMAM dendron-PLL), by the introduction of disulfide (SS) bonds between PLLs. The SS-bonded nanocapsules exhibited a very slow release of DOX under an extracellular environment because the cationic PLL membrane acted as an electrostatic barrier against the protonated DOX molecules. However, increasing the glutathione concentration to the intracellular level facilitated the immediate release of DOX through the collapse of nanocapsules by the spontaneous cleavage of SS bonds.
View Article and Find Full Text PDFPotentiation of pH-sensitive liposome-based antigen carriers with IFN-γ gene lipoplexes was attempted to achieve efficient induction of tumor-specific immunity. 3-Methylglutarylated poly(glycidol) (MGluPG)-modified liposomes and cationic liposomes were used, respectively, for the delivery of antigenic protein ovalbumin (OVA) and IFN-γ-encoding plasmid DNA (pDNA). The MGluPG-modified liposomes and the cationic liposome-pDNA complexes (lipoplexes) formed hybrid complexes via electrostatic interactions after their mixing in aqueous solutions.
View Article and Find Full Text PDFDendron lipids designed to consist of amine-terminated polyamidoamine G1 dendron and two octadecyl chains were used for the preparation of pH-responsive molecular assemblies having phase structures that are changed through their dynamic molecular shape. The dendron lipid contains two primary amines and two tertiary amines in the dendron moiety, changing its charged state in the pH region between pH 10 and pH 4. The assemblies were shown to take a vesicle structure at neutral and alkaline pHs, but their structure changed to a micelle-like structure below pH 6.
View Article and Find Full Text PDF