Publications by authors named "Ryoko Tsukahara"

Article Synopsis
  • Lysophosphatidic acid (LPA) is crucial in the development of chronic pain in animal models, particularly following nerve injuries.
  • The study found that secreted phospholipase A (sPLA)-III is the only type among 11 studied that significantly increases in expression in the spinal dorsal horn after nerve injury.
  • Targeting sPLA-III with specific treatments and inhibitors effectively prevents and reverses pain symptoms, identifying it as a potential therapeutic target for neuropathic pain.
View Article and Find Full Text PDF

Lipid-protein interactions play essential roles in many biological phenomena. Lysophospholipid mediators, such as cyclic phosphatidic acid (cPA), have been recognized as secondary messengers, yet few cellular targets for cPA have been identified to date. Furthermore, the molecular mechanism that activates these downstream signaling events remains unknown.

View Article and Find Full Text PDF

Cyclic phosphatidic acid (cPA) is a lysophospholipid mediator that suppresses cancer metastasis and osteoarthritis. It also has neuroprotective roles in diseases such as multiple sclerosis and delayed neuronal death following transient ischemia. In order to take advantage of the properties of cPA for the development of new therapeutic strategies, we have synthesized several cPA derivatives and discovered 2-carba-cPA (2ccPA) as a promising candidate.

View Article and Find Full Text PDF

Kyotorphin is a unique biologically active neuropeptide (l-tyrosine-l-arginine), which is reported to have opioid-like analgesic actions through a release of Met-enkephalin from the brain slices. N-methyl-l-tyrosine-l-arginine (NMYR), an enzymatically stable mimetic of kyotorphin, successfully caused potent analgesic effects in thermal and mechanical nociception tests in mice when it was given through systemic routes. NMYR analgesia was abolished in μ-opioid receptor-deficient (MOP-KO) mice, and by intracerebroventricular (i.

View Article and Find Full Text PDF

We have previously demonstrated that lysophosphatidic acid (LPA) plays key roles in the initial mechanisms for neuropathic pain (NeuP) development. Here, we examined whether LPA receptor mechanisms and LPA production are related to the glial activation at a late stage after partial sciatic nerve ligation (pSNL) by use of microglial inhibitor, Mac1-saporin or astrocyte inhibitor, and L-α-aminoadipate (L-AA). Although single intrathecal injection of LPA1/3 antagonist, Ki-16425 did not affect the pain threshold at day 7 after the spinal cord injury, repeated treatments of each compound gradually reversed the basal pain threshold to the control level.

View Article and Find Full Text PDF

Lysophosphatidic acid (LPA) and LPA1 receptor signaling play a crucial role in the initiation of peripheral nerve injury-induced neuropathic pain through the alternation of pain-related genes/proteins expression and demyelination. However, LPA and its signaling in the brain are still poorly understood. In the present study, we revealed that the LPA5 receptor expression in corpus callosum elevated after the initiation of demyelination, and the hyperalgesia through Aδ-fibers following cuprizone-induced demyelination was mediated by LPA5 signaling.

View Article and Find Full Text PDF

Alkyl-glycerophosphate (AGP) accumulates in atherogenic oxidized-LDL and human atherosclerotic plaques and is a potent agonist of peroxisome-proliferator-activated receptor-gamma (PPARγ). Recent studies suggest a potential regulatory role for PPARγ in endothelial nitric oxide synthase (eNOS) expression/activation and nitrogen oxide (NO) generation in the vascular endothelium. Importantly, eNOS-induced NO and advanced glycation end-products (AGEs) are involved in blood-vessel damage, and diabetic patients exhibit high serum NO and AGE levels; however, the effect of AGP on NO- and AGE-mediated endothelium dysfunction remains unknown.

View Article and Find Full Text PDF

Lysophosphatidic acid (LPA) initiates demyelination following peripheral nerve injury, which causes neuropathic pain. Our previous in vivo and ex vivo studies using mice have demonstrated that LPA-induced demyelination of spinal dorsal roots is attributed by the LPA-type receptor-mediated down-regulation of myelin-related molecules, such as MBP and MPZ. In this study using S16 mature-type Schwann cells, we found that LPA-induced down-regulation of myelin-related genes is attributed by the activation of LPA receptor, Rho kinase, and p300, leading to an acetylation of NFκB, which down-regulates the transcription of Sox10, MBP and MPZ genes.

View Article and Find Full Text PDF

Atherosclerosis is a disease characterized by building up plaques formation and leads to a potentially serious condition in which arteries are clogged by fatty substances such as cholesterol. Increasing evidence suggests that atherosclerosis is accelerated in type 2 diabetes. Recent study reported that high level of alkyl glycerophosphate (AGP) was accumulated in atherosclerotic lesions.

View Article and Find Full Text PDF

Fatty-acid-binding protein 3, muscle and heart (FABP3), also known as heart-type FABP, is a member of the family of intracellular lipid-binding proteins. It is a small cytoplasmic protein with a molecular mass of about 15 kDa. FABPs are known to be carrier proteins for transporting fatty acids and other lipophilic substances from the cytoplasm to the nucleus, where these lipids are released to a group of nuclear receptors such as peroxisome proliferator-activated receptors (PPARs).

View Article and Find Full Text PDF

Unlabelled: Autotaxin (ENPP2/ATX) and lysophosphatidic acid (LPA) receptors represent two key players in regulating cancer progression. The present study sought to understand the mechanistic role of LPA G protein-coupled receptors (GPCR), not only in the tumor cells but also in stromal cells of the tumor microenvironment. B16F10 melanoma cells predominantly express LPA5 and LPA2 receptors but lack LPA1.

View Article and Find Full Text PDF

Background: Cyclic phosphatidic acid (cPA) is a naturally occurring phospholipid mediator with a unique cyclic phosphate ring at the sn-2 and sn-3 positions of its glycerol backbone. Natural cPA and its chemically stabilized cPA derivative, 2-carba-cPA (2ccPA), inhibit chronic and acute inflammation, and 2ccPA attenuates neuropathic pain. Osteoarthritis (OA) is a degenerative disease frequently associated with symptoms such as inflammation and joint pain.

View Article and Find Full Text PDF

Modulation of autotaxin (ATX), the lysophospholipase D enzyme that produces lysophosphatidic acid, with small-molecule inhibitors is a promising strategy for blocking the ATX-lysophosphatidic acid signaling axis. Although discovery campaigns have been successful in identifying ATX inhibitors, many of the reported inhibitors target the catalytic cleft of ATX. A recent study provided evidence for an additional inhibitory surface in the hydrophobic binding pocket of ATX, confirming prior studies that relied on enzyme kinetics and differential inhibition of substrates varying in size.

View Article and Find Full Text PDF

Autotaxin (ATX), a lysophospholipase D, plays an important role in cancer invasion, metastasis, tumor progression, tumorigenesis, neuropathic pain, fibrotic diseases, cholestatic pruritus, lymphocyte homing, and thrombotic diseases by producing the lipid mediator lysophosphatidic acid (LPA). A high-throughput screen of ATX inhibition using the lysophosphatidylcholine-like substrate fluorogenic substrate 3 (FS-3) and ∼10,000 compounds from the University of Cincinnati Drug Discovery Center identified several small-molecule inhibitors with IC₅₀ vales ranging from nanomolar to low micromolar. The pharmacology of the three most potent compounds: 918013 (1; 2,4-dichloro-N-(3-fluorophenyl)-5-(4-morpholinylsulfonyl) benzamide), 931126 (2; 4-oxo-4-{2-[(5-phenoxy-1H-indol-2-yl)carbonyl]hydrazino}-N-(4-phenylbutan-2-yl)butanamide), and 966791 (3; N-(2,6-dimethylphenyl)-2-[N-(2-furylmethyl)(4-(1,2,3,4-tetraazolyl)phenyl)carbonylamino]-2-(4-hydroxy-3-methoxyphenyl) acetamide), were further characterized in enzyme, cellular, and whole animal models.

View Article and Find Full Text PDF

Cyclic phosphatidic acid (1-acyl-2,3-cyclic-glycerophosphate, CPA), one of nature's simplest phospholipids, is found in cells from slime mold to humans and has a largely unknown function. We find here that CPA is generated in mammalian cells in a stimulus-coupled manner by phospholipase D2 (PLD2) and binds to and inhibits the nuclear hormone receptor PPARgamma with nanomolar affinity and high specificity through stabilizing its interaction with the corepressor SMRT. CPA production inhibits the PPARgamma target-gene transcription that normally drives adipocytic differentiation of 3T3-L1 cells, lipid accumulation in RAW264.

View Article and Find Full Text PDF

A structurally diverse dataset of 119 compounds was used to develop and validate a 2D binary QSAR model for the LPA(3) receptor. The binary QSAR model was generated using an activity threshold of greater than 15% inhibition at 10 microM. The overall accuracy of the model on the training set was 82%.

View Article and Find Full Text PDF

Compound 5 ([5-(3-nitrophenoxy)-1,3-dioxo-1,3-dihydro-2-isoindol-2-yl]acetic acid) was identified as a weak selective LPA(3) antagonist (IC(50)=4504 nM) in a virtual screening effort to optimize a dual LPA(2 and 3) antagonist. Structure-based drug design techniques were used to prioritize similarity search matches of compound 5. This strategy rapidly identified 10 novel antagonists.

View Article and Find Full Text PDF

Lysophosphatidic acid (LPA) and its ether analog alkyl-glycerophosphate (AGP) elicit arterial wall remodeling when applied intralumenally into the uninjured carotid artery. LPA is the ligand of eight GPCRs and the peroxisome proliferator-activated receptor gamma (PPARgamma). We pursued a gene knockout strategy to identify the LPA receptor subtypes necessary for the neointimal response in a non-injury model of carotid remodeling and also compared the effects of AGP and the PPARgamma agonist rosiglitazone (ROSI) on balloon injury-elicited neointima development.

View Article and Find Full Text PDF

Signal transduction modifiers that modulate the lysophosphatidic acid (LPA) pathway have potential as anticancer agents. Herein, we describe metabolically stabilized LPA analogues that reduce cell migration and invasion and cause regression of orthotopic breast tumors in vivo. Two diastereoisomeric alpha-bromophosphonates (BrP-LPA) were synthesized, and the pharmacology was determined for five LPA G protein-coupled receptors (GPCRs).

View Article and Find Full Text PDF

The G protein-coupled lysophosphatidic acid 2 (LPA(2)) receptor elicits prosurvival responses to prevent and rescue cells from apoptosis. However, G protein-coupled signals are not sufficient for the full protective effect of LPA(2). LPA(2) differs from other LPA receptor subtypes in the C-terminal tail, where it contains a zinc finger-binding motif for the interactions with LIM domain-containing TRIP6 and proapoptotic Siva-1, and a PDZ-binding motif through which it complexes with the NHERF2 scaffold protein.

View Article and Find Full Text PDF

In the present study, we utilized virtual screening to identify LPA(3) antagonists. We have developed a three-point structure-based pharmacophore model based on known LPA(3) antagonists. This model was used to mine the NCI database.

View Article and Find Full Text PDF

Lysophosphatidic acid (LPA) is a ligand for three endothelial differentiation gene family G protein-coupled receptors, LPA(1-3). We performed computational modeling-guided mutagenesis of conserved residues in transmembrane domains 3, 4, 5, and 7 of LPA(1-3) predicted to interact with the glycerophosphate motif of LPA C18:1. The mutants were expressed in RH7777 cells, and the efficacy (E(max)) and potency (EC(50)) of LPA-elicited Ca(2+) transients were measured.

View Article and Find Full Text PDF

An efficient enantioselective synthesis of sn-2-aminooxy (AO) analogues of lysophosphatidic acid (LPA) that possess palmitoyl and oleoyl acyl chains is presented. Both sn-2-AO LPA analogues are agonists for the LPA1, LPA2, and LPA4 G-protein-coupled receptors, but antagonists for the LPA3 receptor and inhibitors of autotaxin (ATX). Moreover, both analogues stimulate migration of intestinal epithelial cells in a scratch wound assay.

View Article and Find Full Text PDF

An efficient stereocontrolled synthesis afforded alkoxymethylenephosphonate (MP) analogues of lysophosphatidic acid (LPA) and phosphatidic acid (PA). The pharmacological properties of MP-LPA and MP-PA analogues were characterized for LPA receptor subtype-specific agonist and antagonist activity using Ca(2+)-mobilization assays in RH7777 cells expressing the individual LPA(1)-LPA(3) receptors and CHO cells expressing LPA(4). In addition, activation of a PPARgamma reporter gene construct expressed in CV-1 cells was assessed.

View Article and Find Full Text PDF

As our understanding of the myriads of biological effects caused by lysophospholipids expands, we become witnesses to another miracle of nature that has endowed the simplest lysophospholipids with functions seemingly ubiquitous to every mammalian cell. A decade after the discovery of the EDG family lysophospholipid receptors, the field has gained unimaginable impetus explaining the biological effects of sphingosine-1-phosphate and lysophosphatidic acid (LPA). The discovery of LPA receptors in the purinergic G-protein-coupled receptor (GPCR) gene cluster refined this picture and added complexity to our concepts of lysophospholipid cell signaling.

View Article and Find Full Text PDF