Publications by authors named "Ryoki Asano"

Rumen fibrolytic microorganisms have been used to increase the rate of lignocellulosic biomass biodegradation; however, the microbial and isozymatic characteristics of biodegradation remain unclear. Therefore, the present study investigated the relationship between rumen microorganisms and fibrolytic isozymes associated with lignocellulosic biomass hydrolysis. Rice straw, a widely available agricultural byproduct, was ground and used as a substrate.

View Article and Find Full Text PDF

Treatment with rumen fluid improves methane production from non-degradable lignocellulosic biomass during subsequent methane fermentation; however, the kinetics of xylanases during treatment with rumen fluid remain unclear. This study aimed to identify key xylanases contributing to xylan degradation and their individual activities during xylan treatment with bovine rumen microorganisms. Xylan was treated with bovine rumen fluid at 37°C for 48 h under anaerobic conditions.

View Article and Find Full Text PDF

Rumen microorganisms produce various fibrolytic enzymes and degrade lignocellulosic materials into nutrient sources for ruminants; therefore, the characterization of fibrolytic enzymes contributing to the polysaccharide degradation in the rumen microbiota is important for efficient animal production. This study characterized the fibrolytic isozyme activities of a rumen microbiota from four groups of housed cattle (1, breeding Japanese Black; 2, feedlot Japanese Black; 3, lactating Holstein Friesian; 4, dry Holstein Friesian). Rumen fluids in all cattle groups showed similar concentrations of total volatile fatty acids and reducing sugars, whereas acetic acid contents and pH were different among them.

View Article and Find Full Text PDF

Treatment with rumen microorganisms improves the methane fermentation of undegradable lignocellulosic biomass; however, the role of endoglucanase in lignocellulose digestion remains unclear. This study was conducted to investigate endoglucanases contributing to cellulose degradation during treatment with rumen microorganisms, using carboxymethyl cellulose (CMC) as a substrate. The rate of CMC degradation increased for the first 24 h of treatment.

View Article and Find Full Text PDF

We had developed a new pretreatment system using cow rumen fluid to improve the methane production from lignocellulosic substrates. However, the pretreatment conditions differ from the in-situ rumen environment, therefore different microbes may be involved in plant cell wall decomposition. In the current study, shotgun metagenomic analysis using MiSeq platform was performed to elucidate the bacteria which produce cellulase and hemicellulase in this pretreatment system.

View Article and Find Full Text PDF

Animal manure is a source of the greenhouse gas nitrous oxide (NO), therefore understanding the mechanisms underlying its production is essential for developing mitigating strategies and sustainable livestock production system. In this study, microbial communities potentially involved in multiple emission peaks during initial stage of laboratory-scale dairy manure composting with forced aeration system were investigated. Mature compost was used for the bulking agent.

View Article and Find Full Text PDF

[Pasteurella] pneumotropica is a ubiquitous bacterium frequently isolated from laboratory rodents. Although this bacterium causes various diseases in immunosuppressed animals, little is known about major virulence factors and their roles in pathogenicity. To identify virulence factors, we sequenced the genome of [P.

View Article and Find Full Text PDF

Burkholderiales bacterium GJ-E10, isolated from the Tamagawa River in Akita Prefecture, Japan, is an unclassified, iron-oxidizing chemolithoautotrophic bacterium. Its single circular genome, consisting of 3,276,549 bp, was sequenced by using three types of next-generation sequencers and the sequences were then confirmed by PCR-based Sanger sequencing.

View Article and Find Full Text PDF

Pasteurella pneumotropica is an opportunistic pathogen in rodents that is commonly isolated from upper respiratory tracts in laboratory rodents. Here, we report the draft genome sequence of the P. pneumotropica type strain ATCC 35149, which was first isolated and characterized as biotype Jawetz.

View Article and Find Full Text PDF

The effects of inundation caused by the 2011 Tohoku tsunami on soil bacterial communities in agricultural fields were evaluated. Bacterial communities were compared across three different types of soil, unflooded field (UF) soil, soil flooded for 2 weeks (short term (ST)), and soil flooded for 2 months (long term (LT)), using polymerase chain reaction-pyrosequencing of 16S rRNA genes. Acidobacteria were dominant in UF, with a relative abundance of approximately 35 %, and Proteobacteria dominated flooded soils (30-67 %).

View Article and Find Full Text PDF

Hydrogen sulfide (H2S) is one of the most toxic and offensively odorous gases and is generated in anaerobic bioreactors. A middle-thermophilic sulfur-oxidizing bacterium (SOB), Thiomonas sp. strain RAN5, was isolated and applied for H2S removal from both artificial and anaerobically digested gas.

View Article and Find Full Text PDF

A recent study showed that ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) coexist in the process of cattle manure composting. To investigate their physiological characteristics, liquid cultures seeded with fermenting cattle manure compost were incubated at various temperatures (37°C, 46°C, or 60°C) and ammonium concentrations (0.5, 1, 4, or 10 mM NH (4) (+) -N).

View Article and Find Full Text PDF

The composting process is carried out under aerobic conditions involving bacteria, archaea, and fungi. Little is known about the diversity of archaeal community in compost, although they may play an important role in methane production and ammonia oxidation. In the present study, archaeal community dynamics during cattle manure composting were analyzed using a clone library of the archaeal 16S rRNA gene.

View Article and Find Full Text PDF

Livestock manure is suitable for use as a composting material. However, various intestinal microbes, such as Escherichia coli, are significant components of such manures. Thus, it is desirable that the level of intestinal microbes, and particularly opportunistic pathogens, in compost is inspected and counted regularly.

View Article and Find Full Text PDF

An acidulocomposting system for the treatment of cattle manure with little emission of ammonia gas was developed, and the structure of its microbial community was investigated by denaturing gradient gel electrophoresis (DGGE) and clone library construction. An acidulocomposting apparatus (BC20, 20 L) was operated for 79 days to treat 2 kg (wet wt) of garbage per 1 or 2 days. On day 80 of operation, the substrate was changed from garbage to cattle manure (1 kg of beef cattle manure was added to the apparatus every 2 or 3 days), and the system continued operating from days 80 to 158.

View Article and Find Full Text PDF

Bacterial populations in epilithic biofilms collected from two distinct oligotrophic rivers of Japan were studied using denaturing gradient gel electrophoresis (DGGE). PCR-DGGE of the 16S rRNA gene and subsequent sequencing analysis suggested that in freshwater biofilms, members of the Cytophaga-Flavobacterium-Bacteroides (CFB) group were the most dominant, followed by those of alpha, beta, gamma, and delta-Proteobacteria; Leptospiraceae; and unidentified bacteria. Members of the CFB group, alpha-Proteobacteria, and cyanobacteria/plastid DNA were also detected from the biofilms collected from the estuary site, but the species in these samples differed from those detected in biofilms in the freshwater areas of the rivers.

View Article and Find Full Text PDF

Nozzle-cavitation treatment was used to reduce excess sludge production in a dairy wastewater treatment plant. During the 450-d pilot-scale membrane bioreactor (MBR) operation, when 300 l of the sludge mixed liquor (1/10 of the MBR volume) was disintegrated per day by the nozzle-cavitation treatment with the addition of sodium hydrate (final concentration: 0.01% W/W) and returned to the MBR, the amount of excess sludge produced was reduced by 80% compared with that when sludge was not disintegrated.

View Article and Find Full Text PDF

We investigated the changes in the community structure of ammonia-oxidizing bacteria (AOB) in activated sludge during incubation of the sludge in a medium selective for AOB. The number of AOB present in the activated sludge sample was enumerated by the most-probable-number (MPN) method. Both the activated sludge sample and the incubated samples for MPN determination were analyzed by polymerase chain reaction and denaturing gradient gel electrophoresis (PCR-DGGE).

View Article and Find Full Text PDF

Bacterial communities and betaproteobacterial ammonia-oxidizing bacteria (AOB) communities were evaluated seasonally in an intermittent-aeration sequencing batch process (SBR, plant A) and in 12 other livestock wastewater treatment plants (WWTP): eight SBRs and four conventional activated-sludge systems. Microbial communities were analysed by reverse transcription polymerase chain reaction followed by denaturing-gradient gel electrophoresis (DGGE) and the construction of clone libraries for 16S rRNA and ammonia monooxygenase (amoA) genes. In plant A, the dominant bacteria were as-yet-uncultured bacteria of Bacteroidetes and Proteobacteria, and the DGGE profiles showed that the bacterial communities were stable during a given treatment cycle, but changed seasonally.

View Article and Find Full Text PDF