We previously designed the formulation containing minoxidil (MXD) nanoparticles (MXD-NPs), and found that the MXD-NPs can mainly deliver MXD into hair bulbs via hair follicles pathway, and that the therapeutic efficiency for hair growth is higher in comparison with the formulation containing dissolved MXD. In this study, we investigated whether the skin environmental changes by the treatment of steam towel, ethanol, l-menthol and commercially available (CA) carpronium affect the drug behavior in the MXD-NPs-applied mice. The steam towel, ethanol, l-menthol and CA-carpronium were pre-treated 3 min before MXD-NPs application, and the MXD content in the hair bulge, bulb, skin tissue and blood of mice were measured 4 h after MXD-NPs application.
View Article and Find Full Text PDFWe developed ophthalmic formulations based on nilvadipine (NIL) nanocrystals (NIL-NP dispersions; mean particle size: 98 nm) by using bead mill treatment and investigated whether the instillation of NIL-NP dispersions delivers NIL to the lens and prevents lens opacification in hereditary cataractous Shumiya cataract rats (SCRs). Serious corneal stimulation was not detected in either human corneal epithelial cells or rats treated with NIL-NP dispersions. The NIL was directly delivered to the lens by the instillation of NIL-NP dispersions, and NIL content in the lenses of rats instilled with NIL-NP dispersions was significantly higher than that in the ophthalmic formulations based on NIL microcrystals (NIL-MP dispersions; mean particle size: 21 µm).
View Article and Find Full Text PDFPurpose: The multi-instillation of three commercially available (CA) eye drops [fluorometholone (FL)-, bromfenac (BF)- and levofloxacin (LV)-eye drops] has been used to manage pain and inflammation post-intraocular surgery. However, the multi-instillation of these three eye drops causes corneal damage, and the FL drops have the disadvantage of low ocular bioavailability. To overcome these problems, we prepared fixed-combination eye drops based on FL nanoparticles (FL-NPs) and BF/LV solution (nFBL-FC), and evaluated the corneal toxicity and transcorneal penetration of the nFBL-FC eye drops.
View Article and Find Full Text PDFOphthalmic preservatives are indispensable in eye drop formulations, but may be toxic to corneal structures. Corneal damage necessitates the discontinuation of treatment with ophthalmic solutions. Therefore, the development of a new and safe preservative system without corneal toxicity is needed.
View Article and Find Full Text PDF