Publications by authors named "Ryoji Kise"

The μ-opioid receptor (MOR) is a G-protein-coupled receptor (GPCR) that mediates both analgesic effects and adverse effects of opioid drugs. Despite extensive efforts to develop a signal-biased drug, drugs with sufficiently reduced side effects have not been established, in part owing to lack of comprehensive signal transducer profiles of MOR. In this study, by profiling the activity of signal transducers including G proteins and GPCR kinases (GRKs), we revealed an unprecedented mechanism of selective GRK3 activation by Gβ, leading to β-arrestin recruitment.

View Article and Find Full Text PDF

Pyroglutamylated RF-amide peptide (QRFP) is a peptide hormone with a C-terminal RF-amide motif. QRFP selectively activates a class A G-protein-coupled receptor (GPCR) GPR103 to exert various physiological functions such as energy metabolism and appetite regulation. Here, we report the cryo-electron microscopy structure of the QRFP26-GPR103-G complex at 3.

View Article and Find Full Text PDF

Loss-of-function mutations in the type 2 vasopressin receptor (V2R) are a major cause of congenital nephrogenic diabetes insipidus (cNDI). In the context of partial cNDI, the response to desmopressin (dDAVP) is partially, but not entirely, diminished. For those with the partial cNDI, restoration of V2R function would offer a prospective therapeutic approach.

View Article and Find Full Text PDF

G-protein-coupled receptors (GPCRs) compose the largest family of transmembrane receptors and are targets of approximately one-third of Food and Drug Administration-approved drugs owing to their involvement in almost all physiologic processes. GPCR signaling occurs through the activation of heterotrimeric G-protein complexes and -arrestins, both of which serve as transducers, resulting in distinct cellular responses. Despite seeming simple at first glance, accumulating evidence indicates that activation of either transducer is not a straightforward process as a stimulation of a single molecule has the potential to activate multiple signaling branches.

View Article and Find Full Text PDF

Biased signaling, also known as functional selectivity, has emerged as an important concept in drug development targeting G-protein-coupled receptors (GPCRs). Drugs that provoke biased signaling are expected to offer an opportunity for enhanced therapeutic effectiveness with minimized side effects. Opioid analgesics, whilst exerting potent pain-relieving effects, have become a social problem owing to their serious side effects.

View Article and Find Full Text PDF

G protein-coupled receptors (GPCRs) convert extracellular stimuli into intracellular signaling by coupling to heterotrimeric G proteins of four classes: G, G, G, and G. However, our understanding of the G protein selectivity of GPCRs is incomplete. Here, we quantitatively measure the enzymatic activity of GPCRs in living cells and reveal the G protein selectivity of 124 GPCRs with the exact rank order of their G protein preference.

View Article and Find Full Text PDF

Binding of arrestin to phosphorylated G protein-coupled receptors (GPCRs) is crucial for modulating signaling. Once internalized, some GPCRs remain complexed with β-arrestins, while others interact only transiently; this difference affects GPCR signaling and recycling. Cell-based and in vitro biophysical assays reveal the role of membrane phosphoinositides (PIPs) in β-arrestin recruitment and GPCR-β-arrestin complex dynamics.

View Article and Find Full Text PDF
Article Synopsis
  • Sphingosine-1-phosphate receptor 1 (S1PR1) plays a critical role in lymphocyte movement and is a key target for multiple sclerosis treatments.
  • * Researchers used cryo-electron microscopy and other methods to investigate how certain drugs, like fingolimod and siponimod, specifically interact with S1PR1 to promote internalization through β-arrestin.
  • * Their findings highlight specific interactions that differentiate S1PR subtypes, paving the way for the development of new drugs that can selectively modulate S1PR signaling.
View Article and Find Full Text PDF

Mas-related G protein-coupled receptor X2 (MRGPRX2) mediates the itch response in neurons and is involved in atopic dermatitis (AD)-associated inflammation and itch. Potent and MRGPRX2-selective ligands are essential to an understanding of the detailed function of the receptor and to develop new therapeutic agents for its related diseases. (+)-TAN-67 (1), the enantiomer of the δ-opioid receptor (DOR) selective ligand (-)-TAN-67 (1), has been reported to activate MRGPRX2, although (+)-1 also interacts with DOR, which prevents investigators from interrogating the function of MRGPRX2.

View Article and Find Full Text PDF

The intrinsic efficacy of ligand binding to G protein-coupled receptors (GPCRs) reflects the ability of the ligand to differentially activate its receptor to cause a physiological effect. Here we use attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy to examine the ligand-dependent conformational changes in the human M muscarinic acetylcholine receptor (MR). We show that different ligands affect conformational alteration appearing at the C=O stretch of amide-I band in MR.

View Article and Find Full Text PDF

Lysophosphatidic acid (LPA) is a potential regulator of vascular formation derived from blood. In this study, we utilized zebrafish as a model organism to monitor the blood vessel formation in detail. Zebrafish mutant of ATX, an LPA-producing enzyme, had a defect in the caudal vein plexus (CVP).

View Article and Find Full Text PDF

G-protein-coupled receptors (GPCRs), also known as seven transmembrane receptors (7TMRs), typically interact with two distinct signal-transducers, i.e., G proteins and β-arrestins (βarrs).

View Article and Find Full Text PDF

Autotaxin (ATX) is a secreted enzyme that produces a bioactive lysophospholipid, lysophosphatidic acid (LPA). ATX plays a role in vascular and neural development in embryos but its mechanisms remain unclear. At the beginning of this study, only one zebrafish atx gene (atxa) was known and had been investigated.

View Article and Find Full Text PDF

The lipid mediator lysophosphatidic acid (LPA) signals via six distinct G protein-coupled receptors to mediate both unique and overlapping biological effects, including cell migration, proliferation and survival. LPA is produced extracellularly by autotaxin (ATX), a secreted lysophospholipase D, from lysophosphatidylcholine. ATX-LPA receptor signaling is essential for normal development and implicated in various (patho)physiological processes, but underlying mechanisms remain incompletely understood.

View Article and Find Full Text PDF

Lysophosphatidic acid (LPA) is emerging as an angiogenic factor, because knockdown of the enzyme that produces it (autotaxin, also known as ENPP2) and its receptors cause severe developmental vascular defects in both mice and fish. In addition, overexpression of autotaxin in mice causes similar vascular defects, indicating that the extracellular amount of LPA must be tightly regulated. Here, we focused on an LPA-degrading enzyme, lipid phosphate phosphatase 3 (LPP3, also known as PPAP2B), and showed that LPP3 was localized in specific cell-cell contact sites of endothelial cells and suppresses LPA signalling through the LPA6 receptor (also known as LPAR6).

View Article and Find Full Text PDF

Autotaxin (ATX) is a secretory protein, which converts lysophospholipids to lysophosphatidic acid (LPA), and is essential for embryonic vascular formation. ATX is abundantly detected in various biological fluids and its level is elevated in some pathophysiological conditions. However, the roles of elevated ATX levels remain to be elucidated.

View Article and Find Full Text PDF