Epidemics of infectious diseases posing a serious risk to human health have occurred throughout history. During recent epidemics there has been much debate about policy, including how and when to impose restrictions on behaviour. Policymakers must balance a complex spectrum of objectives, suggesting a need for quantitative tools.
View Article and Find Full Text PDFThis study presents the application of the smoothed profile (SP) method to perform direct numerical simulations for the motion of both passive and active "squirming" particles in Newtonian and viscoelastic fluids. We found that fluid elasticity has a significant impact on both the transient behavior and the steady-state velocity of the particles. Specifically, we observe that the swirling flow generated by the squirmer's surface velocity significantly enhances their swimming speed as the Weissenberg number increases, regardless of the swimming type.
View Article and Find Full Text PDFDuring epidemics people may reduce their social and economic activity to lower their risk of infection. Such social distancing strategies will depend on information about the course of the epidemic but also on when they expect the epidemic to end, for instance due to vaccination. Typically it is difficult to make optimal decisions, because the available information is incomplete and uncertain.
View Article and Find Full Text PDFMicroswimmers can acquire information on the surrounding fluid by sensing mechanical queues. They can then navigate in response to these signals. We analyze this navigation by combining deep reinforcement learning with direct numerical simulations to resolve the hydrodynamics.
View Article and Find Full Text PDFConstructing physical models of living cells and tissues is an extremely challenging task because of the high complexities of both intra- and intercellular processes. In addition, the force that a single cell generates vanishes in total due to the law of action and reaction. The typical mechanics of cell crawling involve periodic changes in the cell shape and in the adhesion characteristics of the cell to the substrate.
View Article and Find Full Text PDFA general method is presented for computing the motions of hydrodynamically interacting particles in various kinds of host fluids for arbitrary Reynolds numbers. The method follows the standard procedure for performing direct numerical simulations (DNS) of particulate systems, where the Navier-Stokes equation must be solved consistently with the motion of the rigid particles, which defines the temporal boundary conditions to be satisfied by the Navier-Stokes equation. The smoothed profile (SP) method provides an efficient numerical scheme for coupling the continuum fluid mechanics with the dispersed moving particles, which are allowed to have arbitrary shapes.
View Article and Find Full Text PDFThree-dimensional simulations with fully resolved hydrodynamics are performed to study the dynamics of a single squirmer with and without gravity to clarify its motion in the vicinity of a flat plate. In the absence of gravity and chirality, the usual dynamics of a squirmer near a wall are recovered. The introduction of chirality modifies the swimming motion of squirmers, adding a component of motion in the third direction.
View Article and Find Full Text PDFContact inhibition is a cell property that limits the migration and proliferation of cells in crowded environments. Here we investigate the growth dynamics of a cell colony composed of migrating and proliferating cells on a substrate using a minimal model that incorporates the mechanisms of contact inhibition of locomotion and proliferation. We find two distinct regimes.
View Article and Find Full Text PDFThe attachment of solid particles to the surface of immersed gas bubbles plays a fundamental role in surface science, and hence plays key roles in various engineering fields ranging from industrial separation processes to the fabrication of functional materials. However, detailed investigation from a microscopic view on how a single particle attaches to a bubble surface and how the particle properties affect the attachment behavior has been so far scarcely addressed. Here, we observed the attachment of a single particle to a bubble surface using a high-speed camera and systematically investigated the effects of the wettability and shape of particles.
View Article and Find Full Text PDFThe migration of cells is relevant for processes such as morphogenesis, wound healing, and invasion of cancer cells. In order to move, single cells deform cyclically. However, it is not understood how these shape oscillations influence collective properties.
View Article and Find Full Text PDFThe mechanosensitivity of cells, which determines how they are able to respond to mechanical signals, is crucial for the functioning of biological systems. Experimentally, this is investigated by studying the reorientation of cells on cyclically stretched substrates. The reorientation depends on the type of cell and on the stretching protocol, but the mechanisms responsible for the response are still not completely understood.
View Article and Find Full Text PDFA triptycene-based shape-persistent belt-shaped macrocycle, metallonanobelt, was synthesized by the self-assembly of 2,3,6,7-tetraaminotriptycene L and square planar Pd. The pentamer was selectively formed by the complexation of L with Pd in the presence of the pillar[6]arene derivative P6 having triethylene glycol pendant as a template, whereas a mixture of a trimer, tetramer, and pentamer was obtained in the absence of the template. The pentamer was successfully isolated based on the solubility difference between the metallonanobelt and the template.
View Article and Find Full Text PDFThe field induced anisotropic interactions between like-charged colloidal particles is studied using direct numerical simulations, where the polarization of the electric double layer is explicitly computed under external AC electric fields. These interactions are found to depend on the magnitude E0 and frequency ω of the applied field, as well as the zeta potential, the Debye length, and the relative orientation of the particles. We also determined the range of E0 and ω over which a dipolar attraction is induced between a pair of like-charged colloids.
View Article and Find Full Text PDFThe collective dynamics of externally driven N_{p}-colloidal systems (1≤N_{p}≤4) in a confined viscous fluid have been investigated using three-dimensional direct numerical simulations with fully resolved hydrodynamics. The dynamical modes of collective particle motion are studied by changing the particle Reynolds number as determined by the strength of the external driving force and the confining wall distance. For a system with N_{p}=3, we found that at a critical Reynolds number a dynamical mode transition occurs from the doublet-singlet mode to the triplet mode, which has not been reported experimentally.
View Article and Find Full Text PDFEur Phys J E Soft Matter
November 2017
We have investigated the onset of collective motion in systems of model microswimmers, by performing a comprehensive analysis of the binary collision dynamics using three-dimensional direct numerical simulations (DNS) with hydrodynamic interactions. From this data, we have constructed a simplified binary collision model (BCM) which accurately reproduces the collective behavior obtained from the DNS for most cases. Thus, we show that global alignment can mostly arise solely from binary collisions.
View Article and Find Full Text PDFA consistent formulation is presented for the direct numerical simulation of an arbitrarily shaped colloidal particle at a deformable fluidic interface. The rigid colloidal particle is decomposed into a collection of solid spherical beads and the three-phase boundaries are replaced with smoothly spreading interfaces. The major merit of the present formulation lies in the ease with which the geometrical decomposition of the colloidal particle is implemented, yet allows the dynamic simulation of intricate three-dimensional colloidal shapes in a binary fluid.
View Article and Find Full Text PDFContact inhibition plays a crucial role in cell motility, wound healing, and tumour formation. By mimicking the mechanical motion of cells crawling on a substrate, we constructed a minimal model of migrating cells that naturally gives rise to contact inhibition of locomotion (CIL). The model cell consists of two disks, a front disk (a pseudopod) and a back disk (cell body), which are connected by a finite extensible spring.
View Article and Find Full Text PDFThree-dimensional simulations with fully resolved hydrodynamics are performed to study the collective motion of model swimmers in bulk and confinement. Calculating the dynamic structure factor, we clarified that the swarming in bulk systems can be understood as a pseudoacoustic mode. Under confinement between flat parallel walls, this pseudoacoustic mode leads to a traveling wavelike motion.
View Article and Find Full Text PDFAmong the key challenges to our understanding of solidification in the glass transition is that it is accompanied by little apparent change in structure. Recently, geometric motifs have been identified in glassy liquids, but a causal link between these motifs and solidification remains elusive. One 'smoking gun' for such a link would be identical scaling of structural and dynamic lengthscales on approaching the glass transition, but this is highly controversial.
View Article and Find Full Text PDFVision, which consists of an optical system, receptors and image-processing capacity, has existed for at least 520 Myr. Except for the optical system, as in the calcified lenses of trilobite and ostracod arthropods, other parts of the visual system are not usually preserved in the fossil record, because the soft tissue of the eye and the brain decay rapidly after death, such as within 64 days and 11 days, respectively. The Upper Carboniferous Hamilton Formation (300 Myr) in Kansas, USA, yields exceptionally well-preserved animal fossils in an estuarine depositional setting.
View Article and Find Full Text PDFPhysical properties of wheat coleoptile segments decreased after treatment with hemicellulose-degrading enzymes, indicating that hemicellulosic polysaccharides function to control the strength of primary cell walls. Changes in the physical properties of plant cell walls, a viscoelastic structure, are thought to be one of the growth-limiting factors for plants and one of the infection-affecting factors for fungi. To study the significance of hemicellulosic polysaccharides that form cross-bridges between cellulose microfibrils in controlling cell wall strength in monocot plants, the effects of hemicellulose degradation by recombinant Magnaporthe oryzae xylanase and 1,3-1,4-β-glucanase, and recombinant Aspergillus oryzae xyloglucanase on the physical properties and polysaccharide solubilization were investigated using wheat (Triticum aestivum L.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
June 2014
The dynamics of charged colloids in an electrolyte solution is studied using direct numerical simulations via the smoothed profile method. We calculated the complex electrophoretic mobility μ(ω) of the charged colloids under an oscillating electric field of frequency ω. We show the existence of three dynamically distinct regimes, determined by the momentum diffusion and ionic diffusion time scales.
View Article and Find Full Text PDFAn improved formulation of the "Smoothed Profile" method is introduced to perform direct numerical simulations of arbitrary rigid body dispersions in a Newtonian host solvent. Previous implementations of the method were restricted to spherical particles, severely limiting the types of systems that could be studied. The validity of the method is carefully examined by computing the friction/mobility tensors for a wide variety of geometries and comparing them to reference values obtained from accurate solutions to the Stokes-Equation.
View Article and Find Full Text PDFThe velocity relaxation of an impulsively forced spherical particle in a fluid confined by two parallel plane walls is studied using a direct numerical simulation approach. During the relaxation process, the momentum of the particle is transmitted in the ambient fluid by viscous diffusion and sound wave propagation, and the fluid flow accompanied by each mechanism has a different character and affects the particle motion differently. Because of the bounding walls, viscous diffusion is hampered, and the accompanying shear flow is gradually diminished.
View Article and Find Full Text PDFA transverse acoustic wave propagates through supercooled liquids in an anomalous manner: for a macroscopic wave number k, the wave propagates long distances, as in elastic solids, whereas it attenuates rapidly for a mesoscopic to microscopic wave number k, as in viscous liquids. In this work, we theoretically describe this anomalous wave propagation using the hydrodynamics of the two-mode Maxwell constitutive model, which were determined independently from the mechanical properties under oscillatory shear strains. To ensure that the Maxwell model can be applied down to a microscopic length scale, we extended it to a k-dependent equation, taking into account the recently reported k dependences of the shear viscosity and modulus [A.
View Article and Find Full Text PDF