Publications by authors named "Ryoichi Saiki"

Coenzyme Qn (ubiquinone or Qn) is a redox active lipid composed of a fully substituted benzoquinone ring and a polyisoprenoid tail of n isoprene units. Saccharomyces cerevisiae coq1-coq9 mutants have defects in Q biosynthesis, lack Q6, are respiratory defective, and sensitive to stress imposed by polyunsaturated fatty acids. The hallmark phenotype of the Q-less yeast coq mutants is that respiration in isolated mitochondria can be rescued by the addition of Q2, a soluble Q analog.

View Article and Find Full Text PDF

Background: Studies with the nematode model Caenorhabditis elegans have identified conserved biochemical pathways that act to modulate life span. Life span can also be influenced by the composition of the intestinal microbiome, and C. elegans life span can be dramatically influenced by its diet of Escherichia coli.

View Article and Find Full Text PDF

Coenzyme Q (ubiquinone or Q) is an essential lipid component of the mitochondrial electron transport chain. In Caenorhabditis elegans Q biosynthesis involves at least nine steps, including the hydroxylation of the hydroquinone ring by CLK-1 and two O-methylation steps mediated by COQ-3. We characterize two C.

View Article and Find Full Text PDF

Among the steps in ubiquinone biosynthesis, that catalyzed by the product of the clk-1/coq7 gene has received considerable attention because of its relevance to life span in Caenorhabditis elegans. We analyzed the coq7 ortholog (denoted coq7) in Schizosaccharomyces pombe, to determine whether coq7 has specific roles that differ from those of other coq genes. We first confirmed that coq7 is necessary for the penultimate step in ubiquinone biosynthesis, from the observation that the deletion mutant accumulated the ubiquinone precursor demethoxyubiquinone-10 instead of ubiquinone-10.

View Article and Find Full Text PDF

Homozygous mice carrying kd (kidney disease) mutations in the gene encoding prenyl diphosphate synthase subunit 2 (Pdss2kd/kd) develop interstitial nephritis and eventually die from end-stage renal disease. The PDSS2 polypeptide in concert with PDSS1 synthesizes the polyisoprenyl tail of coenzyme Q (Q or ubiquinone), a lipid quinone required for mitochondrial respiratory electron transport. We have shown that a deficiency in Q content is evident in Pdss2kd/kd mouse kidney lipid extracts by 40 days of age and thus precedes the onset of proteinuria and kidney disease by several weeks.

View Article and Find Full Text PDF

Ubiquinone is an essential factor for the electron transfer system and is also a known lipid antioxidant. The length of the ubiquinone isoprenoid side-chain differs amongst living organisms, with six isoprene units in the budding yeast Saccharomyces cerevisiae, eight units in Escherichia coli and 10 units in the fission yeast Schizosaccharomyces pombe and in humans. The length of the ubiquinone isoprenoid is determined by the product generated by polyprenyl diphosphate synthases (poly-PDSs), which are classified into homodimer (i.

View Article and Find Full Text PDF

Coenzyme Q (CoQ) is an essential electron carrier in the respiratory chain whose deficiency has been implicated in a wide variety of human mitochondrial disease manifestations. Its multi-step biosynthesis involves production of polyisoprenoid diphosphate in a reaction that requires the enzymes be encoded by PDSS1 and PDSS2. Homozygous mutations in either of these genes, in humans, lead to severe neuromuscular disease, with nephrotic syndrome seen in PDSS2 deficiency.

View Article and Find Full Text PDF

Coenzyme Q(n) is a fully substituted benzoquinone containing a polyisoprene tail of distinct numbers (n) of isoprene groups. Caenorhabditis elegans fed Escherichia coli devoid of Q(8) have a significant lifespan extension when compared to C. elegans fed a standard 'Q-replete'E.

View Article and Find Full Text PDF

Coenzyme Q (Q) is a redox active lipid that is an essential component of the electron transport chain. Here, we show that steady state levels of Coq3, Coq4, Coq6, Coq7 and Coq9 polypeptides in yeast mitochondria are dependent on the expression of each of the other COQ genes. Submitochondrial localization studies indicate Coq9p is a peripheral membrane protein on the matrix side of the mitochondrial inner membrane.

View Article and Find Full Text PDF

The isoprenoid chain of ubiquinone (Q) is determined by trans-polyprenyl diphosphate synthase in micro-organisms and presumably in mammals. Because mice and humans produce Q9 and Q10, they are expected to possess solanesyl and decaprenyl diphosphate synthases as the determining enzyme for a type of ubiquinone. Here we show that murine and human solanesyl and decaprenyl diphosphate synthases are heterotetramers composed of newly characterized hDPS1 (mSPS1) and hDLP1 (mDLP1), which have been identified as orthologs of Schizosaccharomyces pombe Dps1 and Dlp1, respectively.

View Article and Find Full Text PDF

Two solanesyl diphosphate synthases, designated SPS1 and SPS2, which are responsible for the synthesis of the isoprenoid side chain of either plastoquinone or ubiquinone in Arabidopsis thaliana, were identified. Heterologous expression of either SPS1 or SPS2 allowed the generation of UQ-9 in a decaprenyl diphosphate synthase-defective strain of fission yeast and also in wild-type Escherichia coli. SPS1-GFP was found to localize in the ER while SPS2-GFP localized in the plastid of tobacco BY-2 cells.

View Article and Find Full Text PDF

We previously constructed two Schizosaccahromyces pombe ubiquinone-10 (or Coenzyme Q10) less mutants, which are either defective for decaprenyl diphosphate synthase or p-hydroxybenzoate polyprenyl diphosphate transferase. To further confirm the roles of ubiquinone in S. pombe, we examined the phenotype of the abc1Sp (coq8Sp) mutant, which is highly speculated to be defective in ubiquinone biosynthesis.

View Article and Find Full Text PDF

The analysis of the structure and function of long chain-producing polyprenyl diphosphate synthase, which synthesizes the side chain of ubiquinone, has largely focused on the prokaryotic enzymes, and little is known about the eukaryotic counterparts. Here we show that decaprenyl diphosphate synthase from Schizosaccharomyces pombe is comprised of a novel protein named Dlp1 acting in partnership with Dps1. Dps1 is highly homologous to other prenyl diphosphate synthases but Dlp1 shares only weak homology with Dps1.

View Article and Find Full Text PDF