A split-protein system is a simple approach to introduce new termini which are useful as modification sites in protein engineering, but has been adapted mainly for monomeric proteins. Here we demonstrate the design of split subunits of the 60-mer artificial fusion-protein nanocage TIP60. The subunit fragments successfully reformed the cage structure in the same manner as prior to splitting.
View Article and Find Full Text PDFOligomeric protein nanocages often disassemble into their subunits and reassemble by external stimuli. Thus, using these nanocages as cross-linkers for hydrogel network structures is a promising approach to allow hydrogels to undergo stimuli-responsive gel-sol transitions or self-healing. Here, we report hydrogels that show a reversible gel-sol transition resulting from the heat-induced dissociation and reassociation of protein nanocages.
View Article and Find Full Text PDFThe chitinolytic bacterium, Chitiniphilus shinanonensis SAY3 was examined to characterize its chitin-degrading enzymes in view of its potential to convert biomass chitin into useful saccharides. A survey of the whole-genome sequence revealed 49 putative genes encoding polypeptides that are thought to be related to chitin degradation. Based on an analysis of the relative quantity of each transcript and an assay for chitin-degrading activity of recombinant proteins, a chitin degradation system driven by 19 chitinolytic enzymes was proposed.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2023
Producing novel enzymes that are catalytically active in vitro and biologically functional in vivo is a key goal of synthetic biology. Previously, we reported Syn-F4, the first de novo protein that meets both criteria. Syn-F4 hydrolyzed the siderophore ferric enterobactin, and expression of Syn-F4 allowed an inviable strain of (Δ) to grow in iron-limited medium.
View Article and Find Full Text PDFBackground: Real-time monitoring of generator impedance drop is not considered in CLOSE protocol pulmonary vein (PV) isolation (PVI) in patients with atrial fibrillation (AF). We verified whether additional information of impedance drop could minimize ablation index required for PVI using modified CLOSE protocol (target ablation index ≥ 500 on anterior wall and ≥400 on posterior wall along with inter-lesion distance of 3-6 mm and maximum power of 35 W) without any adverse effect of procedural data and efficacy.
Methods: Sixty consecutive Japanese AF patients [paroxysmal AF: 43 (72 %) patients] underwent first-time PVI with modified CLOSE protocol with real-time monitoring of impedance drop (impedance-guided modified CLOSE protocol).
Methods Mol Biol
June 2023
Protein cages and nanostructures are promising biocompatible medical materials, such as vaccines and drug carriers. Recent advances in designed protein nanocages and nanostructures have opened up cutting-edge applications in the fields of synthetic biology and biopharmaceuticals. A simple approach for constructing self-assembling protein nanocages and nanostructures is the design of a fusion protein composed of two different proteins forming symmetric oligomers.
View Article and Find Full Text PDFRecently, functional nanowire production using amyloids as a scaffold for protein immobilization has attracted attention. However, protein immobilization on amyloid fibrils often caused protein inactivation. In this study, we investigated protein immobilization using enzymatic peptide ligation to suppress protein inactivation during immobilization.
View Article and Find Full Text PDFProtein nanocages are of increasing interest for use as drug capsules, but the encapsulation and release of drug molecules at appropriate times require the reversible association and dissociation of the nanocages. One promising approach to addressing this challenge is the design of metal-dependent associating proteins. Such designed proteins typically have Cys or His residues at the protein surface for connecting the associating proteins through metal-ion coordination.
View Article and Find Full Text PDFConjugation of functional molecules to peptides is necessary for protein analysis and applications. Transpeptidase sortase A catalyzes the ligation reaction between the amino acid sequence LPXTG and polyglycine and allows for peptide sequence-specific molecular modifications. In this study, the preparation of pentaglycine-fused green fluorescent protein (G5-GFP) via methionine truncation mediated by Escherichia coli endogenous methionyl aminopeptidase was investigated.
View Article and Find Full Text PDFLectins, carbohydrate-binding proteins, are attractive biomolecules for medical and biotechnological applications. Many lectins have multiple carbohydrate recognition domains (CRDs) and strongly bind to specific glycans through multivalent binding effect. In our previous study, protein nano-building blocks (PN-blocks) were developed to construct self-assembling supramolecular nanostructures by linking two oligomeric proteins.
View Article and Find Full Text PDFThe stability of proteins is an important factor for industrial and medical applications. Improving protein stability is one of the main subjects in protein engineering. In a previous study, we improved the stability of a four-helix bundle dimeric de novo protein (WA20) by five mutations.
View Article and Find Full Text PDFMethods Enzymol
June 2021
The construction of recombinant fusion/chimeric proteins has been widely used for expression of soluble proteins and protein purification in a variety of fields of protein engineering and biotechnology. Fusion proteins are constructed by the linking of two protein domains with a peptide linker. The selection of a linker sequence is important for the construction of stable and bioactive fusion proteins.
View Article and Find Full Text PDFRhodeus flaviventris, a new species, is described from the Le-An River, a tributary flowing into Poyang Lake in the Yangtze River basin, in Jiangxi Province, China. It is distinguished from all congeners by the combination of characters: branched dorsal-fin rays 9 (9-10); branched anal-fin rays 9 (9-10); longest simple rays of dorsal and anal fins thick and stiff; longitudinal scale series 33-34; transverse scale series 11 (10-12); pored scales 4-7; vertebrae 32-34; spindle-shaped eggs with major axis of 3.1-3.
View Article and Find Full Text PDFRecently, we designed and assembled protein nanobuilding blocks (PN-Blocks) from an intermolecularly folded dimeric protein called WA20. Using this dimeric 4-helix bundle, we constructed a series of self-assembling supramolecular nanostructures including polyhedra and chain-type complexes. Here we describe the stabilization of WA20 by designing mutations that stabilize the helices and hydrophobic core.
View Article and Find Full Text PDFThe effect of repetitive training on learned actions has been a major subject in behavioural neuroscience. Many studies of instrumental conditioning in mammals, including humans, suggested that learned actions early in training are goal-driven and controlled by outcome expectancy, but they become more automatic and insensitive to reduction in the value of the outcome after extended training. It was unknown, however, whether the development of value-insensitive behaviour also occurs by extended training of Pavlovian conditioning in any animals.
View Article and Find Full Text PDFLectins are a widespread group of sugar-binding proteins occurring in all types of organisms including animals, plants, bacteria, fungi and even viruses. According to a recent report, there are more than 50 lectin scaffolds (∼Pfam), for which three-dimensional structures are known and sugar-binding functions have been confirmed in the literature, which far exceeds our view in the twentieth century (Fujimoto 2014 , 579-606 (doi:10.1007/978-1-4939-1292-6_46)).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2018
Protein-based nanoparticles hold promise for a broad range of applications. Here, we report the production of a uniform anionic hollow protein nanoparticle, designated TIP60, which spontaneously assembles from a designed fusion protein subunit based on the geometric features of polyhedra. We show that TIP60 tolerates mutation and both its interior and exterior surfaces can be chemically modified.
View Article and Find Full Text PDFThe design of novel proteins that self-assemble into supramolecular complexes is important for development in nanobiotechnology and synthetic biology. Recently, we designed and created a protein nanobuilding block (PN-Block), WA20-foldon, by fusing an intermolecularly folded dimeric de novo WA20 protein and a trimeric foldon domain of T4 phage fibritin (Kobayashi et al., J.
View Article and Find Full Text PDFIsochorismate synthase (ICS) converts chorismate into isochorismate, a precursor of primary and secondary metabolites including salicylic acid (SA). SA plays important roles in responses to stress conditions in plants. Many studies have suggested that the function of plant ICSs is regulated at the transcriptional level.
View Article and Find Full Text PDFA new genus and species, Sinorhodeus microlepis gen. et sp. nov.
View Article and Find Full Text PDFIn multiscale structural biology, synthetic approaches are important to demonstrate biophysical principles and mechanisms underlying the structure, function, and action of bio-nanomachines. A central goal of "synthetic structural biology" is the design and construction of artificial proteins and protein complexes as desired. In this paper, I review recent remarkable progress of an array of approaches for hierarchical design of artificial proteins and complexes that signpost the path forward toward synthetic structural biology as an emerging interdisciplinary field.
View Article and Find Full Text PDFThe central goal of nanobiotechnology is to design and construct novel biomaterials of nanometer sizes. In this short review, we describe recent progress of several approaches for designing and creating artificial self-assembling protein complexes and primarily focus on the following biotechnological strategies for using artificial and fusion proteins as nanoscale building blocks: fusion proteins designed for symmetrical self-assembly; three-dimensional domain-swapped oligomers; self-assembling designed coiled-coil peptide modules; metal-directed self-assembling engineered proteins; computationally designed self-assembling de novo proteins; and self-assembling protein nanobuilding blocks (PN-Blocks) using an intermolecularly folded dimeric de novo protein. These state-of-the-art nanobiotechnologies for designing supramolecular protein complexes will facilitate the development of novel functional nanobiomaterials.
View Article and Find Full Text PDFLarval Stenopsyche marmorata constructs food capture nets and fixed retreats underwater using self-produced proteinaceous silk fibers. In the Chikuma River (Nagano Prefecture, Japan) S. marmorata has a bivoltine life cycle; overwintering larvae grow slowly with reduced net spinning activity in winter.
View Article and Find Full Text PDF