Publications by authors named "Ryo Yokota"

Background: Calcifying fibrous tumor (CFT) arising from the pleura is a relatively rare benign lesion in young and middle-aged adults. We report a 31-year-old woman with pleural CFT who underwent successful complete thoracoscopic enucleation.

Case Presentation: An asymptomatic woman presented with a mass in the right lower lung field that was incidentally detected on a chest X-ray during a routine medical checkup.

View Article and Find Full Text PDF

Rupture of inflammatory aortic aneurysm associated with retroperitoneal fibrosis (RF) is rare. We report a 62-year-old man with an inflammatory abdominal aortic aneurysm (IAAA) complicated with idiopathic RF, resulting in a contained rupture of the common iliac artery. The patient also presented with mild renal insufficiency due to urethral obstruction and left hydronephrosis.

View Article and Find Full Text PDF

Sparked by the development of genome sequencing technology, the quantity and quality of data handled in immunological research have been changing dramatically. Various data and database platforms are now driving the rapid progress of machine learning for immunological data analysis. Of various topics in immunology, T cell receptor repertoire analysis is one of the most important targets of machine learning for assessing the state and abnormalities of immune systems.

View Article and Find Full Text PDF

The highly personalized human skin microbiome may serve as a viable marker in personal identification. Amplicon sequencing resolution using 16S rRNA cannot identify bacterial communities sufficiently to discriminate between individuals. Thus, novel higher-resolution genetic markers are required for forensic purposes.

View Article and Find Full Text PDF

Thymic crosstalk, a set of reciprocal regulations between thymocytes and the thymic environment, is relevant for orchestrating appropriate thymocyte development as well as thymic recovery from various exogenous insults. In this work, interactions shaping thymic crosstalk and the resultant dynamics of thymocytes and thymic epithelial cells are inferred based on quantitative analysis and modeling of the recovery dynamics induced by irradiation. The analysis identifies regulatory interactions consistent with known molecular evidence and reveals their dynamic roles in the recovery process.

View Article and Find Full Text PDF

Inter-sample comparisons of T-cell receptor (TCR) repertoires are crucial for gaining a better understanding of the immunological states determined by different collections of T cells from different donor sites, cell types, and genetic and pathological backgrounds. For quantitative comparison, most previous studies utilized conventional methods in ecology, which focus on TCR sequences that overlap between pairwise samples. Some recent studies attempted another approach that is categorized into Poisson abundance models using the abundance distribution of observed TCR sequences.

View Article and Find Full Text PDF

Identifying causal relations from time series is the first step to understanding the behavior of complex systems. Although many methods have been proposed, few papers have applied multiple methods together to detect causal relations based on time series generated from coupled nonlinear systems with some unobserved parts. Here we propose the combined use of three methods and a majority vote to infer causality under such circumstances.

View Article and Find Full Text PDF

Interaction only within specific molecules is a requisite for accurate operations of a biochemical reaction in a cell where bulk of background molecules exist. While structural specificity is a well-established mechanism for specific interaction, biophysical and biochemical experiments indicate that the mechanism is not sufficient for accounting for the antigen discrimination by T cells. In addition, the antigen discrimination by T cells also accompanies three intriguing properties other than the specificity: sensitivity, speed, and concentration compensation.

View Article and Find Full Text PDF

The hydroxyl radical-mediated oxidation of peptides and proteins constitutes a large group of post-translational modifications that can result in structural and functional changes. These oxidations can lead to hydroxylation, sulfoxidation, or carbonylation of certain amino acid residues and cleavage of peptide bonds. In addition, hydroxyl radicals can convert the N-terminus of peptides to an α-ketoamide via abstraction of the N-terminal α-hydrogen and hydrolysis of the ketimine intermediate.

View Article and Find Full Text PDF

Temporal coherence among neural populations may contribute importantly to signal encoding, specifically by providing an optimal tradeoff between encoding reliability and efficiency. Here, we considered the possibility that learning modulates the temporal coherence among neural populations in association with well-characterized map plasticity. We previously demonstrated that, in appetitive operant conditioning tasks, the tone-responsive area globally expanded during the early stage of learning, but shrank during the late stage.

View Article and Find Full Text PDF

We have previously reported that N-terminal α-ketoamide peptides can be formed through 4-oxo-2(E)-nonenal (ONE)-derived oxidative decarboxylation of aspartic acid (Asp), which converts angiotensin (Ang) II (DRVYIHPF) to pyruvamide-Ang II (Ang P, CH3COCONH-RVYIHPF). The pyruvamide group significantly inhibits Ang P binding to the Ang II type 1 receptor, which mediates the major biological effects of Ang II. In the present study, we found that ONE can also introduce an α-ketoamide moiety at the N-terminus of peptides containing N-terminal residues other than Asp.

View Article and Find Full Text PDF

The mechanisms by which functional maps and map plasticity contribute to cortical computation remain controversial. Recent studies have revisited the theory of neural Darwinism to interpret the learning-induced map plasticity and neuronal heterogeneity observed in the cortex. Here, we hypothesize that the Darwinian principle provides a substrate to explain the relationship between neuron heterogeneity and cortical functional maps.

View Article and Find Full Text PDF