Metallothionein (MT), which is a small metal-binding protein with cysteine-rich motifs, functions in the detoxification of heavy metals in a variety of organisms. Even though previous studies suggest that MT is involved in the tolerance mechanisms against nitrosative stress induced by toxic levels of nitric oxide (NO) in mammalian cells, the physiological functions of MT in relation to NO have not been fully understood. In this study, we analyzed the functions of MT in nitrosative stress tolerance in the yeast .
View Article and Find Full Text PDFNitric oxide as a signaling molecule exerts cytotoxicity known as nitrosative stress at its excess concentrations. In the yeast Saccharomyces cerevisiae, the cellular responses to nitrosative stress and their molecular mechanisms are not fully understood. Here, focusing on the posttranslational modifications that are associated with nitrosative stress response, we show that nitrosative stress increased the protein S-glutathionylation level in yeast cells.
View Article and Find Full Text PDFFungi are ubiquitously present in our living environment and are responsible for crop and infectious diseases. Developing new antifungal agents is constantly needed for their effective control. Here, we investigated fungal cellular responses to an array of antifungal compounds, including plant- and bacteria-derived antifungal compounds.
View Article and Find Full Text PDFNitric oxide (NO) is a ubiquitous signaling molecule, and thus a variety of methods have been developed for its detection and quantification. Fluorometric analyses using a fluorescent NO probe harboring an o-phenylenediamine (OPD) structure are widely used for NO analyses in various organisms, including yeast. Here, we discovered that an NO-independent fluorophore (UNK436) was generated from a fluorescent NO probe 4-amino-5-methylamino-2',7'-difluorofluorescein (DAF-FM), which has an OPD structure, in yeast cells.
View Article and Find Full Text PDFJ Gen Appl Microbiol
June 2022
Nitric oxide (NO) functions in cell protection or cell death, depending on its concentration. Therefore, regulation of the intracellular concentrations of NO by its degradation systems is important for cellular functions. One of the NO degrading enzymes, flavohemoglobin (FHb), which has NO dioxygenase (NOD) activity, is a promising target for antibiotics, based on the finding that FHb-deficient pathogens exhibited reduced host toxicity.
View Article and Find Full Text PDFProtein tyrosine nitration (PTN), in which tyrosine (Tyr) residues on proteins are converted into 3-nitrotyrosine (NT), is one of the post-translational modifications mediated by reactive nitrogen species (RNS). Many recent studies have reported that PTN contributed to signaling systems by altering the structures and/or functions of proteins. This study aimed to investigate connections between PTN and the inhibitory effect of nitrite-derived RNS on fermentation ability using the yeast Saccharomyces cerevisiae.
View Article and Find Full Text PDFNitric oxide (NO) is a ubiquitous signaling molecule in various organisms. In the yeast Saccharomyces cerevisiae, NO functions in both cell protection and cell death, depending on its concentration. Thus, it is important for yeast cells to strictly regulate NO concentration.
View Article and Find Full Text PDFBiosci Biotechnol Biochem
August 2021
We showed that the isobutanol sensitivity in glucose-6-phosphate dehydrogenase-deficient cells of the yeast Saccharomyces cerevisiae was rescued by an alternative NADPH producer, acetaldehyde dehydrogenase, but not in the cells lacking 6-phosphogluconate dehydrogenase. This phenotype correlated with the intracellular NADPH/NADP+ ratio in yeast strains. Our findings indicate the importance of NADPH for the isobutanol tolerance of yeast cells.
View Article and Find Full Text PDFThe reduced form of nicotinamide adenine dinucleotide phosphate (NADPH), which is required for various redox systems involving antioxidative stress enzymes, is thus important for stress tolerance mechanisms. Here, we analyzed the stress response of the NADPH-depleted cells of Saccharomyces cerevisiae. A cell viability assay showed that the NADPH depletion induced by disruption of the ZWF1 gene encoding glucose-6-phosphate dehydrogenase, which is the major determinant of the intracellular NADPH/NADP ratio, enhanced the tolerance of S.
View Article and Find Full Text PDFBiosci Biotechnol Biochem
February 2021
Nitric oxide (NO) is a ubiquitous signaling molecule synthesized from various nitrogen sources. An analytical method to identify a nitrogen source for NO generation was developed using liquid chromatography with tandem mass spectrometry in combination with stable isotope labeling. Our method successfully detected the 15N-labeled NO-containing compound generated from 15N-labeled substrate nitrite in vitro and in vivo.
View Article and Find Full Text PDFThe biological functions of nitric oxide (NO) depend on its concentration, and excessive levels of NO induce various harmful situations known as nitrosative stress. Therefore, organisms possess many kinds of strategies to regulate the intracellular NO concentration and/or to detoxify excess NO. Here, we used genetic screening to identify a novel nitrosative stress tolerance gene, RIB1, encoding GTP cyclohydrolase II (GTPCH2), which catalyzes the first step in riboflavin biosynthesis.
View Article and Find Full Text PDFJ Ind Microbiol Biotechnol
July 2019
N-Acetyltransferase Mpr1 was originally discovered as an enzyme that detoxifies L-azetidine-2-carboxylate through its N-acetylation in the yeast Saccharomyces cerevisiae Σ1278b. Mpr1 protects yeast cells from oxidative stresses possibly by activating a novel L-arginine biosynthesis. We recently constructed a stable variant of Mpr1 (N203K) by a rational design based on the structure of the wild-type Mpr1 (WT).
View Article and Find Full Text PDFNitric oxide (NO) is a cellular signalling molecule widely conserved among organisms, including microorganisms such as bacteria, yeasts, and fungi, and higher eukaryotes such as plants and mammals. NO is mainly produced by the activities of NO synthase (NOS) or nitrite reductase (NIR). There are several NO detoxification systems, including NO dioxygenase (NOD) and S-nitrosoglutathione reductase (GSNOR).
View Article and Find Full Text PDFAs a cellular signaling molecule, nitric oxide (NO) is widely conserved from microorganisms, such as bacteria, yeasts, and fungi, to higher eukaryotes including plants and mammals. NO is mainly produced by NO synthase (NOS) or nitrite reductase (NIR) activity. There are several NO detoxification systems, including NO dioxygenase (NOD) and S-nitrosoglutathione reductase (GSNOR).
View Article and Find Full Text PDFNitric oxide (NO) is a ubiquitous signaling molecule involved in the regulation of a large number of cellular functions. The regulatory mechanism of NO generation in unicellular eukaryotic yeast cells is poorly understood due to the lack of mammalian and bacterial NO synthase (NOS) orthologues, even though yeast produces NO under oxidative stress conditions. Recently, we reported that the flavoprotein Tah18, which was previously shown to transfer electrons to the iron-sulfur cluster protein Dre2, is involved in NOS-like activity in the yeast Saccharomyces cerevisiae.
View Article and Find Full Text PDFPreviously, N-Acetyltransferase Mpr1 was suggested to be involved in a novel pathway of L-arginine biosynthesis in yeast. Our recent crystallographic analysis demonstrated that the overall structure of Mpr1 is a typical folding among proteins in the Gcn5-related N-acetyltransferase superfamily, and also provided clues to the design of mutations for improvement of the enzymatic functions. Here, we constructed new stable variants, Asn203Lys- and Asn203Arg-Mpr1, which exhibited 2.
View Article and Find Full Text PDFThe budding yeast Saccharomyces cerevisiae possesses various defense mechanisms against environmental stresses that generate reactive oxygen species, leading to growth inhibition or cell death. Our recent study showed a novel antioxidative mechanism mediated by nitric oxide (NO) in yeast cells, but the mechanism underlying the oxidative stress tolerance remained unclear. We report here one of the downstream pathways of NO involved in stress-tolerance mechanism in yeast.
View Article and Find Full Text PDFAwamori shochu is a traditional distilled alcoholic beverage made from steamed rice in Okinawa, Japan. Although it has a unique aroma that is distinguishable from that of other types of shochu, no studies have been reported on the breeding of awamori yeasts. In yeast, isoamyl alcohol (i-AmOH), known as the key flavor of bread, is mainly produced from α-ketoisocaproate in the pathway of L-leucine biosynthesis, which is regulated by end-product inhibition of α-isopropylmalate synthase (IPMS).
View Article and Find Full Text PDFThe basic amino acid histidine inhibited yeast cell growth more severely than lysine and arginine. Overexpression of , which encodes a high-affinity copper transporter on the plasma membrane, or addition of copper to the medium alleviated this cytotoxicity. However, the intracellular level of copper ions was not decreased in the presence of excess histidine.
View Article and Find Full Text PDFMpr1 (sigma1278b gene for proline-analog resistance 1), which was originally isolated as N-acetyltransferase detoxifying the proline analog L-azetidine-2-carboxylate, protects yeast cells from various oxidative stresses. Mpr1 mediates the L-proline and L-arginine metabolism by acetylating L-Δ(1)-pyrroline-5-carboxylate, leading to the L-arginine-dependent production of nitric oxide, which confers oxidative stress tolerance. Mpr1 belongs to the Gcn5-related N-acetyltransferase (GNAT) superfamily, but exhibits poor sequence homology with the GNAT enzymes and unique substrate specificity.
View Article and Find Full Text PDF