The anomalous gas sensing behavior has garnered significant attention from researchers, prompting a re-evaluation of the gas sensing theory. This work focuses on inversion gas sensing behavior induced by element doping. W/Mo/Cr-doped VO(M1) samples are synthesized, and their sensing behaviors are investigated.
View Article and Find Full Text PDFThere has been a marked increase in interest in high-temperature superconductors over the past few years, sparked by their potential to revolutionize multiple fields, including energy generation and transportation. A particularly promising avenue of exploration has emerged in the form of ternary superhydrides, compounds composed of hydrogen along with two other rare-earth elements. Our investigation focuses on the search for Y-Th-H ternary compounds; employing an evolutionary search methodology complemented by electron-phonon calculations reveals a stable superhydride, 6̅2-YThH, capable of exhibiting a critical temperature ( ) as high as 222 K at 200 GPa along a few low- novel hydrides.
View Article and Find Full Text PDFTraditional selectivity of gas sensors determined by the magnitude of the response value has significant limitations. The distinctive inversion sensing behavior not only defies the traditional sensing theory but also provides insight into defining selectivity. Herein, the novel definition of selectivity is established in a study with VO(M1).
View Article and Find Full Text PDFDesigning cathode materials that exhibit excellent rate performance and extended cycle life is crucial for the commercial viability of aqueous zinc (Zn)-ion batteries (ZIBs). This report presents a hydrothermal synthesis of stable NiVO·1.22HO (NVOH) cathode material, demonstrating high-rate performance and extended cycle life.
View Article and Find Full Text PDFCation migration coupled with oxygen vacancy formation is known to drive the layered to disordered spinel/rock-salt phase transformation in the high-Ni layered oxide cathodes of Li-ion batteries. However, the effect of different electronic states of oxygen vacancies on the cation migration still remains elusive. Here, we investigate Ni migration in delithiated Ni-rich LiNiMnCoO (hence LiNMC811) in the presence of neutral and charged oxygen vacancies by means of first-principles density functional theory (DFT) calculations coupled with the nudged elastic band (NEB) method.
View Article and Find Full Text PDFPseudopotential locality errors have hampered the applications of the diffusion Monte Carlo (DMC) method in materials containing transition metals, in particular oxides. We have developed locality error free effective core potentials, pseudo-Hamiltonians, for transition metals ranging from Cr to Zn. We have modified a procedure published by some of us in Bennett et al.
View Article and Find Full Text PDFThe physical and chemical properties of nanoribbon edges are important for characterizing nanoribbons and applying them in electronic devices, sensors, and catalysts. The mechanical response of molybdenum disulfide nanoribbons, which is an important issue for their application in thin resonators, is expected to be affected by the edge structure, albeit this result is not yet being reported. In this work, the width-dependent Young's modulus is precisely measured in single-layer molybdenum disulfide nanoribbons with armchair edges using the developed nanomechanical measurement based on a transmission electron microscope.
View Article and Find Full Text PDFAlzheimer's disease is associated with the aggregation of the misfolded neuronal peptide, amyloid-β42 (Aβ42). Evidence has suggested that several reasons are responsible for the toxicity caused by the aggregation of Aβ42, including the conformational restriction of Aβ42. In this study, one of the toxic conformers of Aβ42, which contains a Glu-to-Pro substitution (E22P-Aβ42), was explored using atomic force microscopy and molecular docking to study the aggregation dynamics.
View Article and Find Full Text PDFMixed-anion compounds have attracted growing attentions, but their synthesis is challenging, making a rational search desirable. Here, we explored LaF -LaX (X=Cl, Br, I) system using ab initio structure searches based on evolutionary algorithms, and predicted LaF X and LaFX (X=Br, I), which are respectively isostructural with LaHBr and YH I, consisting of layered La-F blocks with single and double ordered honeycomb lattices, separated by van der Waals gaps. We successfully synthesized these compounds: LaF Br and LaFI crystallize in the predicted structure, while LaF I is similar to the predicted one but with different layer stacking.
View Article and Find Full Text PDFHerein, we report accurate atomization energy calculations for 55 molecules in the Gaussian-2 (G2) set using lattice regularized diffusion Monte Carlo (LRDMC). We compare the Jastrow-Slater determinant with a more flexible JsAGPs (Jastrow correlated antisymmetrized geminal power with singlet correlation) . AGPs is built from pairing functions, which explicitly include pairwise correlations among electrons, and hence, this is expected to be more efficient in recovering the correlation energy.
View Article and Find Full Text PDFCobalt carbonate hydroxide (CCH) is a pseudocapacitive material with remarkably high capacitance and cycle stability. Previously, it was reported that CCH pseudocapacitive materials are orthorhombic in nature. Recent structural characterization has revealed that they are hexagonal in nature; however, their H positions still remain unclear.
View Article and Find Full Text PDFA combination of F magic angle spinning (MAS) nuclear magnetic resonance (NMR) and density functional theory (DFT) were used to study the ordering of F atoms in PbTiOF. This analysis revealed that F atoms predominantly occupy two of the six available inequivalent sites in a ratio of 73 : 27. DFT-based calculations explained the preference of F occupation on these sites and quantitatively reproduced the experimental occupation ratio, independent of the choice of functional.
View Article and Find Full Text PDFA common approach for studying a solid solution or disordered system within a periodic framework is to create a supercell in which certain amounts of target elements are substituted with other elements. The key to generating supercells is determining how to eliminate symmetry-equivalent structures from many substitution patterns. Although the total number of substitutions is on the order of trillions, only symmetry-inequivalent atomic substitution patterns need to be identified, and their number is far smaller than the total.
View Article and Find Full Text PDFIn quantum Monte Carlo (QMC) methods, energy estimators are calculated as (functions of) statistical averages of quantities sampled during a calculation. Associated statistical errors of these averages are often estimated. This error estimation is not straightforward and there are several choices of the error estimation methods.
View Article and Find Full Text PDFThe cathode material of a lithium-ion battery is a key component that affects durability, capacity, and safety. Compared to the LiCoO cathode material (the reference standard for these properties), LiNiO can extract more Li at the same voltage and has therefore attracted considerable attention as a material that can be used to obtain higher capacity. As a trade-off, it undergoes pyrolysis relatively easily, leading to ignition and explosion hazards, which is a challenge associated with the application of this compound.
View Article and Find Full Text PDFNatrium super ionic conductor (NASICON) compounds form a rich and highly chemically tunable family of crystalline materials that are of widespread interest because they include exemplars with high ionic conductivity, low thermal expansion, and redox tunability. This makes them suitable candidates for applications ranging from solid-state batteries to nuclear waste storage materials. The key to an understanding of these properties, including the origins of effective cation transport and low, anisotropic (and sometimes negative) thermal expansion, lies in the lattice dynamics associated with specific details of the crystal structure.
View Article and Find Full Text PDFBio-based polymer materials having great potential due to the depletion of fossil-fuel resources have been applied as single-use and medicinal materials but their low thermomechanical resistance have limited wider applications. Here, ultrahigh thermoresistant bio-based terpolymers with a low dielectric constant, comprising polybenzimidazole and poly(benzoxazole--aramid), were prepared by a method involving stepwise polycondensation of three monomers, 3,4-diaminobenzoic acid for benzimidazoles, 3-amino-4-hydroxylbenzoic acid for benzoxazoles, and 4-aminobenzoic acid for aramids. For optimized monomer compositions, the obtained terpolymers exhibited dielectric constants lower than 3, and a 10% mass loss at approximately 760 °C which is a temperature higher than that for any other polymer material reported so far.
View Article and Find Full Text PDFPhys Chem Chem Phys
February 2022
The disiloxane molecule is a prime example of silicate compounds containing the Si-O-Si bridge. The molecule is of significant interest within the field of quantum chemistry, owing to the difficulty in theoretically predicting its properties. Herein, the linearisation barrier of disiloxane is investigated using a fixed-node diffusion Monte Carlo (FNDMC) approach, which is one of the most reliable methods in accounting for the electronic correlation.
View Article and Find Full Text PDFDensity functional theory (DFT) is a valuable tool for calculating adsorption energies toward designing materials for hydrogen storage. However, dispersion forces being absent from the local/semi-local theory, it remains unclear as to how the consideration of van der Waals (vdW) interactions affects such calculations. For the first time, we applied diffusion Monte Carlo (DMC) to evaluate the adsorption characteristics of a hydrogen molecule on a (5,5) armchair silicon-carbide nanotube (H-SiCNT).
View Article and Find Full Text PDFMetal atomic chains have been reported to change their electronic or magnetic properties by slight mechanical stimulus. However, the mechanical response has been veiled because of lack of information on the bond nature. Here, we clarify the bond nature in platinum (Pt) monatomic chains by our transmission electron microscope method.
View Article and Find Full Text PDFWe have developed a framework for using quantum annealing computation to evaluate a key quantity in ionic diffusion in solids, the correlation factor. Existing methods can only calculate the correlation factor analytically in the case of physically unrealistic models, making it difficult to relate microstructural information about diffusion path networks obtainable by current ab initio techniques to macroscopic quantities such as diffusion coefficients. We have mapped the problem into a quantum spin system described by the Ising Hamiltonian.
View Article and Find Full Text PDFFinding a metal contact with higher interface adhesion and lower contact resistivity is a major challenge in realizing 2D material-based field-effect transistors. The commonly used metals in the semiconductor industry have different interface chemistry with phosphorene. Although phosphorene FETs have been fabricated with gold, titanium, and palladium contacts, there are other metals with a better interface.
View Article and Find Full Text PDFNew CrAs-based layered mixed-anion compounds SrScCrAsO (SrScO-21113) and BaScCrAsO (BaScO-32225) were synthesized, and their electronic structures and physical properties were investigated. The structures of these compounds comprise stacking of the anti-fluorite CrAs layer and perovskite-like SrScO or BaScO layers. The lattice constants of these compounds are relatively longer than those of the related compounds, such as BaCrAs, owing to the insertion of a large perovskite blocking layer of SrScO/BaScO.
View Article and Find Full Text PDFWe investigated the reliability of methods to predict the binding energies of molecular encapsulation complexes. Vast possibilities for the docking conformations were screened down to a couple of geometries using a semiempirical docking simulation. For the candidates, we applied density functional theory (DFT) with several exchange-correlation (XC) functionals to evaluate the binding energy.
View Article and Find Full Text PDF