Publications by authors named "Ryo Kariyazono"

The operon in sp. PCC 6803, encoding bidirectional hydrogenase responsible for H production, is transcriptionally upregulated under microoxic conditions. Although several regulators for transcription have been identified, their dynamics and higher-order DNA structure of region in microoxic conditions remain elusive.

View Article and Find Full Text PDF

During meiotic prophase, sister chromatids are organized into axial element (AE), which underlies the structural framework for the meiotic events such as meiotic recombination and homolog synapsis. HORMA domain-containing proteins (HORMADs) localize along AE and play critical roles in the regulation of those meiotic events. Organization of AE is attributed to two groups of proteins: meiotic cohesins REC8 and RAD21L; and AE components SYCP2 and SYCP3.

View Article and Find Full Text PDF

Double-strand breaks (DSBs) and their repair mechanisms are essential for normal cell life. However, quantitative analysis of DSBs on mammalian whole chromosomes remains difficult. The method described here enables the quantitative detection of mammalian chromosomal DSBs by pulsed-field gel electrophoresis (PFGE) using a contour-clamped homogeneous electric field (CHEF).

View Article and Find Full Text PDF

HORMA domain-containing proteins such as Hop1 play crucial regulatory roles in various chromosomal functions. Here, we investigated roles of the fission yeast Hop1 in the formation of recombination-initiating meiotic DNA double strand breaks (DSBs). Meiotic DSB formation in fission yeast relies on multiple protein-protein interactions such as the one between the chromosome axial protein Rec10 and the DSB-forming complex subunit Rec15.

View Article and Find Full Text PDF

Microtubules play multiple roles in a wide range of cellular phenomena, including cell polarity establishment and chromosome segregation. A number of microtubule regulators have been identified, including microtubule-associated proteins and kinases, and knowledge of these factors has contributed to our molecular understanding of microtubule regulation of each relevant cellular process. The known regulators, however, are insufficient to explain how those processes are linked to one another, underscoring the need to identify additional regulators.

View Article and Find Full Text PDF