Publications by authors named "Ryo Karakida"

While data augmentation (DA) is generally applied to input data, several studies have reported that applying DA to hidden layers in neural networks, i.e., feature augmentation, can improve performance.

View Article and Find Full Text PDF

Hopfield networks and Boltzmann machines (BMs) are fundamental energy-based neural network models. Recent studies on modern Hopfield networks have broadened the class of energy functions and led to a unified perspective on general Hopfield networks, including an attention module. In this letter, we consider the BM counterparts of modern Hopfield networks using the associated energy functions and study their salient properties from a trainability perspective.

View Article and Find Full Text PDF

A biological neural network in the cortex forms a neural field. Neurons in the field have their own receptive fields, and connection weights between two neurons are random but highly correlated when they are in close proximity in receptive fields. In this paper, we investigate such neural fields in a multilayer architecture to investigate the supervised learning of the fields.

View Article and Find Full Text PDF

The Fisher information matrix (FIM) plays an essential role in statistics and machine learning as a Riemannian metric tensor or a component of the Hessian matrix of loss functions. Focusing on the FIM and its variants in deep neural networks (DNNs), we reveal their characteristic scale dependence on the network width, depth, and sample size when the network has random weights and is sufficiently wide. This study covers two widely used FIMs for regression with linear output and for classification with softmax output.

View Article and Find Full Text PDF

Deep neural networks are good at extracting low-dimensional subspaces (latent spaces) that represent the essential features inside a high-dimensional dataset. Deep generative models represented by variational autoencoders (VAEs) can generate and infer high-quality datasets, such as images. In particular, VAEs can eliminate the noise contained in an image by repeating the mapping between latent and data space.

View Article and Find Full Text PDF

We propose a new divergence on the manifold of probability distributions, building on the entropic regularization of optimal transportation problems. As Cuturi ( 2013 ) showed, regularizing the optimal transport problem with an entropic term is known to bring several computational benefits. However, because of that regularization, the resulting approximation of the optimal transport cost does not define a proper distance or divergence between probability distributions.

View Article and Find Full Text PDF

The dynamics of supervised learning play a main role in deep learning, which takes place in the parameter space of a multilayer perceptron (MLP). We review the history of supervised stochastic gradient learning, focusing on its singular structure and natural gradient. The parameter space includes singular regions in which parameters are not identifiable.

View Article and Find Full Text PDF

The restricted Boltzmann machine (RBM) is an essential constituent of deep learning, but it is hard to train by using maximum likelihood (ML) learning, which minimizes the Kullback-Leibler (KL) divergence. Instead, contrastive divergence (CD) learning has been developed as an approximation of ML learning and widely used in practice. To clarify the performance of CD learning, in this paper, we analytically derive the fixed points where ML and CDn learning rules converge in two types of RBMs: one with Gaussian visible and Gaussian hidden units and the other with Gaussian visible and Bernoulli hidden units.

View Article and Find Full Text PDF